login
A162548
A Chebyshev transform of the little Schroeder numbers A001003.
3
1, 1, 2, 9, 37, 156, 695, 3203, 15118, 72739, 355475, 1759624, 8804341, 44457125, 226256114, 1159387253, 5976713665, 30974296468, 161285018771, 843388543471, 4427120165182, 23319497761799, 123221525405447, 652989260163472
OFFSET
0,3
COMMENTS
Hankel transform is Somos-4 variant A162546.
FORMULA
G.f.: (1/(1+x^2))*s(x/(1+x^2)), s(x) the g.f. of A001003.
G.f.: (1+x+x^2 - sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2)).
G.f.: 1/(1+x^2-x/(1-2*x/(1+x^2-x/(1-2*x/(1+x^2-x/(1-2*x/(1+x+x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*C(n-k,k)*A001003(n-2k).
Conjecture: (n+1)*a(n) +3*(-2*n+1)*a(n-1) +(4*n-5)*a(n-2) +12*(-n+2)*a(n-3) +(4*n-11)*a(n-4) +3*(-2*n+7)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Nov 15 2012. (Formula verified and used for computations. - Fung Lam, Feb 19 2014)
MATHEMATICA
CoefficientList[Series[(1+x+x^2 -Sqrt[1-6*x+3*x^2-6*x^3+x^4])/(4*x*(1+x^2)), {x, 0, 30}], x] (* G. C. Greubel, Feb 26 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 4*x*(1+x^2))) \\ G. C. Greubel, Feb 26 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x+x^2 -Sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2)) )); // G. C. Greubel, Feb 26 2019
(Sage) ((1+x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
CROSSREFS
Sequence in context: A012493 A106851 A129169 * A150983 A150984 A150985
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 05 2009
STATUS
approved