OFFSET
0,3
COMMENTS
Hankel transform is Somos-4 variant A162546.
LINKS
Fung Lam, Table of n, a(n) for n = 0..1335
FORMULA
G.f.: (1/(1+x^2))*s(x/(1+x^2)), s(x) the g.f. of A001003.
G.f.: (1+x+x^2 - sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2)).
G.f.: 1/(1+x^2-x/(1-2*x/(1+x^2-x/(1-2*x/(1+x^2-x/(1-2*x/(1+x+x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*C(n-k,k)*A001003(n-2k).
Conjecture: (n+1)*a(n) +3*(-2*n+1)*a(n-1) +(4*n-5)*a(n-2) +12*(-n+2)*a(n-3) +(4*n-11)*a(n-4) +3*(-2*n+7)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Nov 15 2012. (Formula verified and used for computations. - Fung Lam, Feb 19 2014)
MATHEMATICA
CoefficientList[Series[(1+x+x^2 -Sqrt[1-6*x+3*x^2-6*x^3+x^4])/(4*x*(1+x^2)), {x, 0, 30}], x] (* G. C. Greubel, Feb 26 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 4*x*(1+x^2))) \\ G. C. Greubel, Feb 26 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x+x^2 -Sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2)) )); // G. C. Greubel, Feb 26 2019
(Sage) ((1+x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 05 2009
STATUS
approved