OFFSET
0,4
COMMENTS
The number of spotlight tilings of an m X n rectangle missing the southeast corner. E.g., there are 2 spotlight tilings of a 2 X 2 square missing its southeast corner. - Bridget Tenner, Nov 10 2007
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
LINKS
Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
B. E. Tenner, Spotlight tiling, Ann. Combinat. 14 (4) (2010) 553-568.
FORMULA
T(m,n) = binomial(m+n,m) - 2*binomial(m+n-2,m-1), up to offset and transformation of array to triangular indices. - Bridget Tenner, Nov 10 2007
T(n,k) = binomial(n, k+1) + binomial(n, n-k+1). - Roger L. Bagula, Feb 17 2009
T(0,n) = T(n,0) = n, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n.
EXAMPLE
From Roger L. Bagula, Feb 17 2009: (Start)
Triangle begins:
0;
1, 1;
2, 2, 2;
3, 4, 4, 3;
4, 7, 8, 7, 4;
5, 11, 15, 15, 11, 5;
6, 16, 26, 30, 26, 16, 6;
7, 22, 42, 56, 56, 42, 22, 7;
8, 29, 64, 98, 112, 98, 64, 29, 8;
9, 37, 93, 162, 210, 210, 162, 93, 37, 9;
10, 46, 130, 255, 372, 420, 372, 255, 130, 46, 10;
11, 56, 176, 385, 627, 792, 792, 627, 385, 176, 56, 11;
12, 67, 232, 561, 1012, 1419, 1584, 1419, 1012, 561, 232, 67, 12. ... (End)
MAPLE
seq(seq(binomial(n, k+1) + binomial(n, n-k+1), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
MATHEMATICA
T[n_, k_]:= T[n, k] = Binomial[n, k+1] + Binomial[n, n-k+1];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 17 2009; modified by G. C. Greubel, Nov 12 2019 *)
PROG
(Haskell)
a051601 n k = a051601_tabl !! n !! k
a051601_row n = a051601_tabl !! n
a051601_tabl = iterate
(\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [0]
-- Reinhard Zumkeller, Nov 23 2012
(Magma) /* As triangle: */ [[Binomial(n, m+1)+Binomial(n, n-m+1): m in [0..n]]: n in [0..12]]; // Bruno Berselli, Aug 02 2013
(PARI) T(n, k) = binomial(n, k+1) + binomial(n, n-k+1);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Nov 12 2019
(Sage) [[binomial(n, k+1) + binomial(n, n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k+1) + Binomial(n, n-k+1) ))); # G. C. Greubel, Nov 12 2019
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved