OFFSET
0,2
COMMENTS
If Y is a 2-subset of an n-set X then, for n>=7, a(n-7) is the number of 7-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
a(n-5) = binomial(n,7) + binomial(n,5) for n>4. - Zerinvary Lajos, Jul 24 2006
G.f.: (1-2*x+2*x^2)/(1-x)^8. - Colin Barker, Feb 22 2012
a(n) = 8*(n-1) - 28*(n-2) + 56*(n-3) - 70*(n-4) + 56*(n-5) - 28*(n-6) + 8*(n-7) - (n-8). - Vincenzo Librandi, May 01 2012
a(n) = (n+5)*(n+4)*(n+3)*(n+2)*(n+1)*(n^2-n+42)/5040. - R. J. Mathar, Oct 01 2021
MAPLE
[seq(binomial(n, 7)+binomial(n, 5), n=5..34)]; # Zerinvary Lajos, Jul 24 2006
MATHEMATICA
a=1; b=2; c=3; d=4; e=5; f=6; s=7; lst={s}; Do[a+=n; b+=a; c+=b; d+=c; e+=d; f+=e; s+=f; AppendTo[lst, s], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
CoefficientList[Series[(1-2*x+2*x^2)/(1-x)^8, {x, 0, 30}], x] (* Vincenzo Librandi, May 01 2012 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 6, 22, 64, 162, 372, 792, 1584}, 30] (* Harvey P. Dale, Mar 11 2023 *)
PROG
(Magma) [Binomial(n, 7) + Binomial(n, 5): n in [5..40]]; // Vincenzo Librandi, May 01 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved