login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002663
a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).
(Formerly M4152 N1725)
25
0, 0, 0, 0, 1, 6, 22, 64, 163, 382, 848, 1816, 3797, 7814, 15914, 32192, 64839, 130238, 261156, 523128, 1047225, 2095590, 4192510, 8386560, 16774891, 33551806, 67105912, 134214424, 268431773, 536866822, 1073737298
OFFSET
0,6
COMMENTS
Starting with "1" = eigensequence of a triangle with bin(n,4), A000332 as the left border: (1, 5, 15, 35, 70, ...) and the rest 1's. - Gary W. Adamson, Jul 24 2010
The Kn25 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the four leading zeros. - Johannes W. Meijer, Aug 14 2011
(1 + 6x + 22x^2 + 64x^3 + ...) = (1 + 3x + 6x^2 + 10x^3 + ...) * (1 + 3x + 7x^2 + 15x^3 + ...). - Gary W. Adamson, Mar 14 2012
The sequence starting (1, 6, 22, ...) is the binomial transform of A171418 and starting (0, 0, 0, 1, 6, 22, ...) is the binomial transform of (0, 0, 0, 1, 2, 2, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = 2^n - A000125(n).
G.f.: x^4/((1-2*x)*(1-x)^4). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..n} binomial(n,k+4) = Sum_{k=4..n} binomial(n,k). - Paul Barry, Aug 23 2004
a(n) = 2*a(n-1) + binomial(n-1,3). - Paul Barry, Aug 23 2004
a(n) = (6*2^n - n^3 - 5*n - 6)/6. - Mats Granvik, Gary W. Adamson, Feb 17 2010
MAPLE
A002663 := proc(n): 2^n - add(binomial(n, k), k=0..3) end: seq(A002663(n), n=0..30); # Johannes W. Meijer, Aug 14 2011
MATHEMATICA
a=1; lst={}; s1=s2=s3=s4=0; Do[s1+=a; s2+=s1; s3+=s2; s4+=s3; AppendTo[lst, s4]; a=a*2, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
Table[Sum[ Binomial[n + 4, k + 4], {k, 0, n}], {n, -4, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
PROG
(Magma) [2^n - Binomial(n, 0)- Binomial(n, 1) - Binomial(n, 2) - Binomial(n, 3): n in [0..35]]; // Vincenzo Librandi, May 20 2011
(Haskell)
a002663 n = a002663_list !! n
a002663_list = map (sum . drop 4) a007318_tabl
-- Reinhard Zumkeller, Jun 20 2015
(PARI) a(n)=(6*2^n-n^3-5*n-6)/6 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
a(n)= A055248(n, 4). Partial sums of A002662.
Sequence in context: A280481 A055797 A001925 * A099855 A347435 A003469
KEYWORD
nonn,easy
STATUS
approved