login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035042
a(n) = 2^n - C(n,0)- ... - C(n,9).
13
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 79, 378, 1471, 4944, 14893, 41226, 106762, 262144, 616666, 1401292, 3096514, 6690448, 14198086, 29703676, 61450327, 126025204, 256737233, 520381366, 1050777737, 2115862624, 4251885323, 8531819446
OFFSET
0,12
REFERENCES
J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.
LINKS
FORMULA
G.f.: x^10/((1-2*x)*(1-x)^10).
MAPLE
a:=n->sum(binomial(n, j), j=10..n): seq(a(n), n=0..33); # Zerinvary Lajos, Jan 04 2007
MATHEMATICA
Table[2^n-Sum[Binomial[n, i], {i, 0, 9}], {n, 0, 40}] (* Harvey P. Dale, Jan 05 2013 *)
PROG
(Haskell)
a035042 n = a035042_list !! n
a035042_list = map (sum . drop 10) a007318_tabl
-- Reinhard Zumkeller, Jun 20 2015
CROSSREFS
a(n)= A055248(n, 10). Partial sums of A035041.
Cf. A007318.
Sequence in context: A200036 A224775 A258480 * A061593 A344728 A243955
KEYWORD
nonn,easy
STATUS
approved