This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035041 a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,8). 5
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 67, 299, 1093, 3473, 9949, 26333, 65536, 155382, 354522, 784626, 1695222, 3593934, 7507638, 15505590, 31746651, 64574877, 130712029, 263644133, 530396371, 1065084887, 2136022699, 4279934123, 8570386546 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 J. Eckhoff, Der Satz von Radon in konvexen Produktstrukturen II, Monat. f. Math., 73 (1969), 7-30. FORMULA G.f.: x^9/((1-2*x)*(1-x)^9). MAPLE a:=n->sum(binomial(n, j), j=9..n): seq(a(n), n=0..33); # Zerinvary Lajos, Jan 04 2007 MATHEMATICA a=1; lst={}; s1=s2=s3=s4=s5=s6=s7=s8=s9=0; Do[s1+=a; s2+=s1; s3+=s2; s4+=s3; s5+=s4; s6+=s5; s7+=s6; s8+=s7; s9+=s8; AppendTo[lst, s9]; a=a*2, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *) Table[Sum[ Binomial[n, k], {k, 9, n}], {n, 0, 33}] (* Zerinvary Lajos, Jul 08 2009 *) PROG (Haskell) a035041 n = a035041_list !! n a035041_list = map (sum . drop 9) a007318_tabl -- Reinhard Zumkeller, Jun 20 2015 CROSSREFS a(n)= A055248(n, 9). Partial sums of A035040. Cf. A000079, A000225, A000295, A002663, A002664, A035038-A035042. Cf. A007318. Sequence in context: A268458 A001808 A258479 * A125591 A092841 A165673 Adjacent sequences:  A035038 A035039 A035040 * A035042 A035043 A035044 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.