login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A268458
Number of length-4 0..n arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.
1
11, 67, 229, 581, 1231, 2311, 3977, 6409, 9811, 14411, 20461, 28237, 38039, 50191, 65041, 82961, 104347, 129619, 159221, 193621, 233311, 278807, 330649, 389401, 455651, 530011, 613117, 705629, 808231, 921631, 1046561, 1183777, 1334059
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^4 + 4*n^3 + 4*n^2 + n + 1.
Empirical g.f.: x*(11 + 12*x + 4*x^2 - 4*x^3 + x^4) / (1 - x)^5. - Colin Barker, Jan 13 2019
Proof of empirical formula: There are (n+1)^4 arrays without the constraint. n of them are of the form (x,x+1,x+1,x) with 0 <= x <= n-1, n*(n+1) are of the form (x,x+1,x,y) with 0 <= x<= n-1 and 0<=y<=n, and n*(n+1) are of the form (y,x,x+1,x). That leaves n^4 + 4*n^3 + 4*n^2 + n + 1. - Robert Israel, Nov 28 2019
EXAMPLE
Some solutions for n=9:
2 7 0 3 8 5 3 3 4 5 8 9 9 8 2 4
7 1 3 8 4 1 1 0 8 6 2 5 1 9 2 5
6 0 7 3 1 1 0 5 8 2 0 8 1 4 0 2
2 3 1 4 5 0 9 4 9 2 9 4 8 6 2 9
MAPLE
seq(n^4 + 4*n^3 + 4*n^2 + n + 1, n=1..100); # Robert Israel, Nov 28 2019
CROSSREFS
Row 4 of A268457.
Sequence in context: A141969 A142645 A201605 * A001808 A258479 A035041
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 04 2016
STATUS
approved