login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268457
T(n,k)=Number of length-n 0..k arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.
12
2, 3, 4, 4, 9, 7, 5, 16, 25, 11, 6, 25, 61, 67, 16, 7, 36, 121, 229, 176, 22, 8, 49, 211, 581, 852, 456, 29, 9, 64, 337, 1231, 2776, 3146, 1169, 37, 10, 81, 505, 2311, 7160, 13204, 11536, 2971, 46, 11, 100, 721, 3977, 15816, 41526, 62535, 42032, 7496, 56, 12, 121
OFFSET
1,1
COMMENTS
Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..7....25.....61.....121......211.......337.......505........721........991
.11....67....229.....581.....1231......2311......3977.......6409.......9811
.16...176....852....2776.....7160.....15816.....31276......56912......97056
.22...456...3146...13204....41526....108032....245626.....504876.....959414
.29..1169..11536...62535...240170....736525...1926444....4474451....9476950
.37..2971..42032..294967..1385338...5012171..15089356...39616567...93543782
.46..7496.152254.1385969..7970326..34047931.118040270..350431909..922677334
.56.18796.548568.6488635.45742764.230889543.922247248.3096903363.9094484100
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
k=2: a(n) = 6*a(n-1) -13*a(n-2) +14*a(n-3) -10*a(n-4) +4*a(n-5) -a(n-6)
k=3: [order 15]
k=4: [order 28]
k=5: [order 51]
k=6: [order 89]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n + 1
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n + 1
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + n^2 + 2*n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 2*n^3 + 6*n - 4
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 5*n^4 - 7*n^3 + 18*n^2 - 5*n - 5 for n>1
EXAMPLE
Some solutions for n=6 k=4
..3....2....3....2....2....0....4....2....2....0....1....0....0....3....4....3
..0....2....1....2....4....0....1....1....2....4....4....2....3....2....3....3
..0....4....1....1....4....2....3....0....1....4....2....1....1....2....0....1
..3....0....4....2....3....2....1....0....2....4....4....4....3....1....0....0
..4....1....2....3....2....2....0....4....0....4....4....4....1....3....1....3
..0....1....3....4....3....1....4....0....2....0....1....1....1....2....4....2
CROSSREFS
Column 1 is A000124.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A061600(n+1).
Sequence in context: A269467 A228461 A267471 * A244940 A244832 A250351
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 04 2016
STATUS
approved