OFFSET
1,1
COMMENTS
There are two arrays (or lists, or vectors) involved, a length n+2 array with free elements from 0..k (thus (k+1)^(n+2) of them) and an array that is being enumerated of length n, each element of the latter being the maximum of three adjacent elements of the first array.
Many different first arrays can give the same second array.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..1700
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-4)
k=2: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7)
k=3: [order 10]
k=4: [order 13]
k=5: [order 16]
k=6: [order 19]
k=7: [order 22]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = (2/3)*n^3 + (5/2)*n^2 + (17/6)*n + 1
n=4: a(n) = (1/3)*n^4 + 2*n^3 + (25/6)*n^2 + (7/2)*n + 1
n=5: a(n) = (2/15)*n^5 + (7/6)*n^4 + (25/6)*n^3 + (19/3)*n^2 + (21/5)*n + 1
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]
EXAMPLE
Table starts
...2....3.....4.....5......6......7.......8.......9......10.......11.......12
...4....9....16....25.....36.....49......64......81.....100......121......144
...7...22....50....95....161....252.....372.....525.....715......946.....1222
..11...46...130...295....581...1036....1716....2685....4015.....5786.....8086
..17...91...310...821...1847...3703....6812...11721...19117....29843....44914
..27..183...736..2227...5615..12453...25096...46941...82699...138699...223224
..44..383..1821..6254..17487..42386...92430..185727..349558...623513..1063283
..72..819..4673.18394..57303.151882..357510..768231.1535578..2893605..5191407
.117.1749.12107.55285.194064.567835.1453506.3357985.7152815.14263777.26930773
Some solutions for n=4 k=4
..3....4....4....3....3....4....3....4....3....0....3....3....4....2....0....2
..0....4....1....3....2....0....2....4....1....0....3....3....1....2....0....0
..4....1....1....0....1....0....4....0....0....0....2....1....4....2....2....3
..4....0....3....3....2....0....4....2....3....1....3....1....4....0....4....3
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Aug 22 2013
EXTENSIONS
Edited by N. J. A. Sloane, Sep 02 2013
STATUS
approved