login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217954
T(n,k) = number of n-element 0..3 arrays with each element the minimum of k adjacent elements of a random 0..3 array of n+k-1 elements.
10
4, 4, 16, 4, 16, 64, 4, 16, 50, 256, 4, 16, 50, 144, 1024, 4, 16, 50, 130, 422, 4096, 4, 16, 50, 130, 310, 1268, 16384, 4, 16, 50, 130, 296, 736, 3823, 65536, 4, 16, 50, 130, 296, 624, 1821, 11472, 262144, 4, 16, 50, 130, 296, 610, 1289, 4673, 34350, 1048576, 4, 16
OFFSET
1,1
COMMENTS
See A228461 for comments on the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
........4......4......4.....4.....4.....4.....4.....4.....4.....4.....4.....4
.......16.....16.....16....16....16....16....16....16....16....16....16....16
.......64.....50.....50....50....50....50....50....50....50....50....50....50
......256....144....130...130...130...130...130...130...130...130...130...130
.....1024....422....310...296...296...296...296...296...296...296...296...296
.....4096...1268....736...624...610...610...610...610...610...610...610...610
....16384...3823...1821..1289..1177..1163..1163..1163..1163..1163..1163..1163
....65536..11472...4673..2741..2209..2097..2083..2083..2083..2083..2083..2083
...262144..34350..12107..6134..4202..3670..3558..3544..3544..3544..3544..3544
..1048576.102896..31103.14269..8366..6434..5902..5790..5776..5776..5776..5776
..4194304.308419..79039.33577.17569.11666..9734..9202..9090..9076..9076..9076
.16777216.924532.199819.78304.38251.22313.16410.14478.13946.13834.13820.13820
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +5*a(n-4) -4*a(n-5) +6*a(n-6) +4*a(n-7) +2*a(n-9) +a(n-10)
k=4: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-5) -4*a(n-6) +6*a(n-7) +4*a(n-8) +5*a(n-9) +a(n-10) +3*a(n-11) +2*a(n-12) +a(n-13)
k=5: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-6) -4*a(n-7) +6*a(n-8) +4*a(n-9) +5*a(n-10) +6*a(n-11) +2*a(n-12) +4*a(n-13) +3*a(n-14) +2*a(n-15) +a(n-16)
k=6: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-7) -4*a(n-8) +6*a(n-9) +4*a(n-10) +5*a(n-11) +6*a(n-12) +7*a(n-13) +3*a(n-14) +5*a(n-15) +4*a(n-16) +3*a(n-17) +2*a(n-18) +a(n-19)
k=7: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-8) -4*a(n-9) +6*a(n-10) +4*a(n-11) +5*a(n-12) +6*a(n-13) +7*a(n-14) +8*a(n-15) +4*a(n-16) +6*a(n-17) +5*a(n-18) +4*a(n-19) +3*a(n-20) +2*a(n-21) +a(n-22)
Diagonal: a(n) = (1/720)*n^6 + (1/48)*n^5 + (23/144)*n^4 + (9/16)*n^3 + (241/180)*n^2 + (11/12)*n + 1
EXAMPLE
Some solutions for n=4 k=4
..0....1....0....1....1....0....1....2....0....1....1....1....0....0....3....0
..0....1....1....1....3....3....2....2....2....1....2....2....1....2....3....2
..1....3....3....2....3....2....3....3....2....1....1....3....1....2....2....3
..1....1....3....3....0....0....0....1....0....0....1....3....0....1....2....0
CROSSREFS
Column 2 is A203094(n+1). A217949 is also a column. Cf. A228461, A217883.
Sequence in context: A255298 A255302 A102376 * A273749 A273563 A278254
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, suggestion that the diagonal might be a polynomial from L. Edson Jeffery in the Sequence Fans Mailing List, Oct 15 2012
STATUS
approved