The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217883 T(n,k) = number of n-element 0..2 arrays with each element the minimum of k adjacent elements of a random 0..2 array of n+k-1 elements. 10
 3, 3, 9, 3, 9, 27, 3, 9, 22, 81, 3, 9, 22, 51, 243, 3, 9, 22, 46, 121, 729, 3, 9, 22, 46, 91, 292, 2187, 3, 9, 22, 46, 86, 183, 704, 6561, 3, 9, 22, 46, 86, 153, 383, 1691, 19683, 3, 9, 22, 46, 86, 148, 274, 819, 4059, 59049, 3, 9, 22, 46, 86, 148, 244, 511, 1749, 9749, 177147 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A228461 and A217954 for more information about the definition. - N. J. A. Sloane, Sep 02 2013 Table starts ........3......3......3.....3.....3.....3....3....3....3....3....3....3....3 ........9......9......9.....9.....9.....9....9....9....9....9....9....9....9 .......27.....22.....22....22....22....22...22...22...22...22...22...22...22 .......81.....51.....46....46....46....46...46...46...46...46...46...46...46 ......243....121.....91....86....86....86...86...86...86...86...86...86...86 ......729....292....183...153...148...148..148..148..148..148..148..148..148 .....2187....704....383...274...244...239..239..239..239..239..239..239..239 .....6561...1691....819...511...402...372..367..367..367..367..367..367..367 ....19683...4059...1749...993...685...576..546..541..541..541..541..541..541 ....59049...9749...3699..1966..1223...915..806..776..771..771..771..771..771 ...177147..23422...7772..3880..2263..1520.1212.1103.1073.1068.1068.1068.1068 ...531441..56268..16316..7558..4243..2639.1896.1588.1479.1449.1444.1444.1444 ..1594323.135166..34325.14544..7910..4711.3107.2364.2056.1947.1917.1912.1912 ..4782969.324692..72349.27819.14528..8471.5285.3681.2938.2630.2521.2491.2486 .14348907.779977.152573.53226.26274.15107.9166.5980.4376.3633.3325.3216.3186 LINKS R. H. Hardin, Table of n, a(n) for n = 1..902 FORMULA Empirical for column k: k=2: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) k=3: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7) k=4: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-5) -a(n-6) +a(n-7) +a(n-8) +a(n-9) k=5: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-7) -a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) k=7: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-8) -a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) Diagonal: a(n) = (1/24)*n^4 + (1/4)*n^3 + (23/24)*n^2 + (3/4)*n + 1 EXAMPLE Some solutions for n=4 k=4 ..0....0....2....1....0....0....1....2....0....2....2....1....0....2....1....1 ..2....2....2....1....0....0....1....1....1....2....1....2....2....2....1....2 ..1....2....2....1....0....2....2....0....2....2....1....2....2....2....2....2 ..0....0....0....1....1....0....1....0....0....2....1....1....2....1....0....2 CROSSREFS Column 2 is A202882(n+1). Cf. A228461, A217954, A217878. Sequence in context: A160121 A048883 A241717 * A036553 A339318 A166466 Adjacent sequences:  A217880 A217881 A217882 * A217884 A217885 A217886 KEYWORD nonn,tabl AUTHOR R. H. Hardin, observation that the diagonal is a polynomial from L. Edson Jeffery in the Sequence Fans Mailing List, Oct 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 18:05 EDT 2021. Contains 343949 sequences. (Running on oeis4.)