login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217883
T(n,k) = number of n-element 0..2 arrays with each element the minimum of k adjacent elements of a random 0..2 array of n+k-1 elements.
10
3, 3, 9, 3, 9, 27, 3, 9, 22, 81, 3, 9, 22, 51, 243, 3, 9, 22, 46, 121, 729, 3, 9, 22, 46, 91, 292, 2187, 3, 9, 22, 46, 86, 183, 704, 6561, 3, 9, 22, 46, 86, 153, 383, 1691, 19683, 3, 9, 22, 46, 86, 148, 274, 819, 4059, 59049, 3, 9, 22, 46, 86, 148, 244, 511, 1749, 9749, 177147
OFFSET
1,1
COMMENTS
See A228461 and A217954 for more information about the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
........3......3......3.....3.....3.....3....3....3....3....3....3....3....3
........9......9......9.....9.....9.....9....9....9....9....9....9....9....9
.......27.....22.....22....22....22....22...22...22...22...22...22...22...22
.......81.....51.....46....46....46....46...46...46...46...46...46...46...46
......243....121.....91....86....86....86...86...86...86...86...86...86...86
......729....292....183...153...148...148..148..148..148..148..148..148..148
.....2187....704....383...274...244...239..239..239..239..239..239..239..239
.....6561...1691....819...511...402...372..367..367..367..367..367..367..367
....19683...4059...1749...993...685...576..546..541..541..541..541..541..541
....59049...9749...3699..1966..1223...915..806..776..771..771..771..771..771
...177147..23422...7772..3880..2263..1520.1212.1103.1073.1068.1068.1068.1068
...531441..56268..16316..7558..4243..2639.1896.1588.1479.1449.1444.1444.1444
..1594323.135166..34325.14544..7910..4711.3107.2364.2056.1947.1917.1912.1912
..4782969.324692..72349.27819.14528..8471.5285.3681.2938.2630.2521.2491.2486
.14348907.779977.152573.53226.26274.15107.9166.5980.4376.3633.3325.3216.3186
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5)
k=3: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7)
k=4: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-5) -a(n-6) +a(n-7) +a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11)
k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-7) -a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13)
k=7: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-8) -a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15)
Diagonal: a(n) = (1/24)*n^4 + (1/4)*n^3 + (23/24)*n^2 + (3/4)*n + 1
EXAMPLE
Some solutions for n=4 k=4
..0....0....2....1....0....0....1....2....0....2....2....1....0....2....1....1
..2....2....2....1....0....0....1....1....1....2....1....2....2....2....1....2
..1....2....2....1....0....2....2....0....2....2....1....2....2....2....2....2
..0....0....0....1....1....0....1....0....0....2....1....1....2....1....0....2
CROSSREFS
Column 2 is A202882(n+1). Cf. A228461, A217954, A217878.
Sequence in context: A160121 A048883 A241717 * A036553 A339318 A359600
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, observation that the diagonal is a polynomial from L. Edson Jeffery in the Sequence Fans Mailing List, Oct 14 2012
STATUS
approved