login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217956
Total number of solutions to the equation x^2+k*y^2 = n with x > 0, y > 0, k >= 0, or 0 if infinite. (Order matters for the equation x^2+y^2 = n).
5
0, 1, 1, 0, 3, 2, 2, 3, 0, 4, 3, 4, 6, 3, 3, 0, 7, 5, 5, 7, 6, 5, 4, 6, 0, 6, 6, 8, 9, 5, 6, 8, 9, 8, 5, 0, 11, 6, 6, 11, 12, 6, 8, 9, 12, 7, 6, 10, 0, 9, 8, 15, 12, 10, 8, 10, 13, 10, 8, 10, 15, 7, 9, 0, 16, 9, 10, 15, 12, 10, 8, 15, 18, 10, 9, 16, 12, 8, 11, 15, 0, 12, 9, 16, 19, 10, 9, 16, 18, 13, 12, 13, 14, 11, 9, 15, 21, 10, 14, 0
OFFSET
1,5
COMMENTS
If the equation x^2+y^2 = n has two solutions (x, y), (y, x) then they will be counted differently.
No solutions can exist for the values of k >= n.
a(n) is the same as A216674(n) when n is not the sum of two positive squares.
But when n is the sum of two positive squares, the ordered pairs for the equation x^2+y^2 = n count.
For example,
10 = 3^2 + 1^2.
10 = 1^2 + 3^2.
10 = 2^2 + 6*1^2.
10 = 1^2 + 9*1^2.
So a(10) = 4. On the other hand, for the sequence A216674, the ordered pair 3^2+1^2 and 1^2+3^2 will be counted as the same, and so A216674(10) = 3.
PROG
(PARI) for(n=1, 100, sol=0; for(k=0, n, for(x=1, n, if((issquare(n-k*x*x)&&n-k*x*x>0), sol++))); if(issquare(n), print1(0", "), print1(sol", "))) /* V. Raman, Oct 16 2012 */
CROSSREFS
Cf. A216674 (a variant of this sequence, when the order does not matter for the equation x^2+y^2 = n, i.e. if the equation x^2+y^2 = n has got two solutions (x, y), (y, x) then they will be counted as the same).
Sequence in context: A073756 A328829 A006379 * A105198 A133882 A092106
KEYWORD
nonn
AUTHOR
V. Raman, Oct 16 2012
STATUS
approved