login
A105198
a(n) = n(n+1)/2 mod 4.
17
0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0
OFFSET
0,3
COMMENTS
0,1,3,2,2,3,1,0 repeated indefinitely.
If N is any power of 2 then n(n+1)/2 mod N is a repeating pattern of length 2N. Moreover, the first N digits form a permutation P of A={0,1,...,N-1}. The subsequent N digits are P in the reversed order. The technique is useful for the generation of arbitrarily large pseudo-random permutations.
LINKS
O. Y. Takeshita and D. J. Costello, Jr., New Deterministic Interleaver Designs for Turbo-Codes, IEEE Trans. Inform. Theory, vol. 46, no. 6, pp. 1988-2006, Sept. 2000.
FORMULA
From Paul Barry, Jul 26 2005: (Start)
G.f.: (x + 2x^2 + 2x^4 + x^5)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7).
a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 3/2. (End)
a(n) = (((n+1)^5 - n^5 - 1) mod 120)/30. - Gary Detlefs, Mar 25 2012
a(n) = -ceiling(n/2)*(-1)^n mod 4. - Wesley Ivan Hurt, Jul 13 2014
MAPLE
for n from 0 to 300 do printf(`%d, `, n*(n+1)/2 mod 4) od: # James A. Sellers, Apr 21 2005
A105198:=n->-ceil(n/2)*(-1)^n mod 4: seq(A105198(n), n=0..100); # Wesley Ivan Hurt, Jul 13 2014
MATHEMATICA
Table[Mod[-Ceiling[n/2] (-1)^n, 4], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 13 2014 *)
PROG
(Magma) [ -Ceiling(n/2)*(-1)^n mod 4 : n in [0..100]]; // Wesley Ivan Hurt, Jul 13 2014
(PARI) Vec((x+2*x^2+2*x^4+x^5)/(1-x+x^2-x^3+x^4-x^5+x^6-x^7) + O(x^90)) \\ Michel Marcus, Jul 13 2014
(Scheme) (define (A105198 n) (modulo (* 1/2 n (+ 1 n)) 4)) ;; Antti Karttunen, Aug 10 2017
CROSSREFS
Cf. triangular numbers A000217, A105332-A105340.
One less than A110549, A133882 shifted once right, with zero inserted to front.
Sequence in context: A328829 A006379 A217956 * A133882 A092106 A278885
KEYWORD
nonn,easy
AUTHOR
Oscar Takeshita, Apr 11 2005
EXTENSIONS
More terms from James A. Sellers, Apr 21 2005
STATUS
approved