login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278885
E.g.f. A = A(x,y) satisfies: A^2 + B^2 + C^2 = 1 + y^2 and A^3 + B^3 + C^3 = 1 + y^3, where functions B = B(x,y) and C = C(x,y) are described by A278886 and A278887, respectively.
5
-1, 1, 0, 0, 0, 0, 1, -3, 2, -2, 3, -1, 0, 2, -8, 6, 6, -8, 2, 0, -1, 11, -20, 44, -104, 104, -44, 20, -11, 1, 0, -10, 100, -150, -70, 130, 130, -70, -150, 100, -10, 0, 1, -43, 142, -466, 2245, -5423, 7480, -7480, 5423, -2245, 466, -142, 43, -1, 0, 42, -1008, 2646, -462, 4704, -23730, 17808, 17808, -23730, 4704, -462, 2646, -1008, 42, 0, -1, 171, -1040, 3888, -45138, 215718, -501504, 720816, -790524, 790524, -720816, 501504, -215718, 45138, -3888, 1040, -171, 1, 0, -170, 9500, -42150, 38990, -422070, 2104870, -3396830, 1821030, -113170, -113170, 1821030, -3396830, 2104870, -422070, 38990, -42150, 9500, -170, 0
OFFSET
1,8
FORMULA
Given e.g.f. A(x,y) = Sum_{n>=1} x^n/n! * Sum_{k=1..2*n} T(n,k)*y^k, functions A = A(x,y), B = B(x,y), and C = C(x,y) satisfy:
(1) A^2 + B^2 + C^2 = 1 + y^2,
(2) A^3 + B^3 + C^3 = 1 + y^3,
where y is a parameter independent of x.
Vector [A,B,C] equals the integration of the cross product specified by:
(3) [A,B,C] = [0,1,y] + Integral [A,B,C] X [A^2,B^2,C^2] dx,
thus [A',B',C'] is orthogonal to [A,B,C] and [A^2,B^2,C^2].
Explicitly,
(3.a) A = Integral B*C^2 - B^2*C dx,
(3.b) B = 1 + Integral C*A^2 - C^2*A dx,
(3.c) C = y + Integral A*B^2 - A^2*B dx.
Since [A',B',C'] = [A,B,C] X [A^2,B^2,C^2], then
(4) A'^2 + B'^2 + C'^2 = (1+y^2)*(A^4 + B^4 + C^4) - (1+y^3)^2.
(5) [A',B',C'] X [A,B,C] = (1+y^2)*[A^2,B^2,C^2] - (1+y^3)*[A,B,C];
explicitly,
(5.a) B'*C - C'*B = (1+y^2)*A^2 - (1+y^3)*A,
(5.b) C'*A - A'*C = (1+y^2)*B^2 - (1+y^3)*B,
(5.c) A'*B - B'*A = (1+y^2)*C^2 - (1+y^3)*C.
Let D = A^4 + B^4 + C^4, then
(6) [A^2,B^2,C^2] X [A',B',C'] = D*[A,B,C] - (1+y^3)*[A^2,B^2,C^2];
explicitly,
(6.a) B^2*C' - C^2*B' = D*A - (1+y^3)*A^2,
(6.b) C^2*A' - A^2*C' = D*B - (1+y^3)*B^2,
(6.c) A^2*B' - B^2*A' = D*C - (1+y^3)*C^2.
ROW SUMS:
Sum_{k=1..2*n} T(n,k) = 0, for n>=1.
Sum_{k=1..4*n} k * T(2*n,k) = 0, for n>=1.
Sum_{k=1..4*n-2} k * T(2*n-1,k) = 2^(n-1), for n>=1.
EXAMPLE
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y), for n>=1, k=1..2*n, begins:
-1, 1;
0, 0, 0, 0;
1, -3, 2, -2, 3, -1;
0, 2, -8, 6, 6, -8, 2, 0;
-1, 11, -20, 44, -104, 104, -44, 20, -11, 1;
0, -10, 100, -150, -70, 130, 130, -70, -150, 100, -10, 0;
1, -43, 142, -466, 2245, -5423, 7480, -7480, 5423, -2245, 466, -142, 43, -1;
0, 42, -1008, 2646, -462, 4704, -23730, 17808, 17808, -23730, 4704, -462, 2646, -1008, 42, 0;
-1, 171, -1040, 3888, -45138, 215718, -501504, 720816, -790524, 790524, -720816, 501504, -215718, 45138, -3888, 1040, -171, 1;
0, -170, 9500, -42150, 38990, -422070, 2104870, -3396830, 1821030, -113170, -113170, 1821030, -3396830, 2104870, -422070, 38990, -42150, 9500, -170, 0; ...
where A(x,y) = Sum_{n>=1} x^n/n! * Sum_{k=1..2*n} T(n,k)*y^k.
...
E.g.f.: A(x,y) = (y^2 - y)*x + (-y^6 + 3*y^5 - 2*y^4 + 2*y^3 - 3*y^2 + y)*x^3/3! +
(2*y^7 - 8*y^6 + 6*y^5 + 6*y^4 - 8*y^3 + 2*y^2)*x^4/4! +
(y^10 - 11*y^9 + 20*y^8 - 44*y^7 + 104*y^6 - 104*y^5 + 44*y^4 - 20*y^3 + 11*y^2 - y)*x^5/5! +
(-10*y^11 + 100*y^10 - 150*y^9 - 70*y^8 + 130*y^7 + 130*y^6 - 70*y^5 - 150*y^4 + 100*y^3 - 10*y^2)*x^6/6! +
(-y^14 + 43*y^13 - 142*y^12 + 466*y^11 - 2245*y^10 + 5423*y^9 - 7480*y^8 + 7480*y^7 - 5423*y^6 + 2245*y^5 - 466*y^4 + 142*y^3 - 43*y^2 + y)*x^7/7! +...
such that functions A = A(x,y), B = B(x,y), and C = C(x,y) satisfy:
(1) A^2 + B^2 + C^2 = 1 + y^2 and
(2) A^3 + B^3 + C^3 = 1 + y^3.
RELATED SERIES.
B(x,y) = 1 + (-y^4 + y^3)*x^2/2! + (2*y^5 - 4*y^4 + 2*y^3)*x^3/3! +
(y^8 - 3*y^7 + 2*y^6 - 8*y^5 + 15*y^4 - 7*y^3)*x^4/4! + (-10*y^9 + 40*y^8 - 30*y^7 - 10*y^6 - 20*y^5 + 50*y^4 - 20*y^3)*x^5/5! + (-y^12 + 11*y^11 + 34*y^9 - 304*y^8 + 594*y^7 - 634*y^6 + 520*y^5 - 281*y^4 + 61*y^3)*x^6/6! + (42*y^13 - 364*y^12 + 462*y^11 - 168*y^10 + 2296*y^9 - 4956*y^8 + 2436*y^7 + 952*y^6 - 378*y^5 - 504*y^4 + 182*y^3)*x^7/7! +...
C(x,y) = y + (y^2 - y)*x^2/2! + (-2*y^4 + 4*y^3 - 2*y^2)*x^3/3! + (-7*y^6 + 15*y^5 - 8*y^4 + 2*y^3 - 3*y^2 + y)*x^4/4! + (20*y^8 - 50*y^7 + 20*y^6 + 10*y^5 + 30*y^4 - 40*y^3 + 10*y^2)*x^5/5! + (61*y^10 - 281*y^9 + 520*y^8 - 634*y^7 + 594*y^6 - 304*y^5 + 34*y^4 + 11*y^2 - y)*x^6/6! + (-182*y^12 + 504*y^11 + 378*y^10 - 952*y^9 - 2436*y^8 + 4956*y^7 - 2296*y^6 + 168*y^5 - 462*y^4 + 364*y^3 - 42*y^2)*x^7/7! +...
The scalar triple product yields
[A',B',C'] * ([A,B,C] X [A^2,B^2,C^2]) = A'^2 + B'^2 + C'^2
where
A'^2 + B'^2 + C'^2 = (y^4 - 2*y^3 + y^2) + (4*y^7 - 8*y^6 + 8*y^5 - 8*y^4 + 4*y^3)*x^2/2! + (-8*y^9 + 16*y^8 - 8*y^7 + 8*y^5 - 16*y^4 + 8*y^3)*x^3/3! +
(-28*y^11 + 124*y^10 - 240*y^9 + 356*y^8 - 424*y^7 + 356*y^6 - 240*y^5 + 124*y^4 - 28*y^3)*x^4/4! + (80*y^13 - 200*y^12 - 120*y^11 + 480*y^10 - 200*y^9 + 200*y^7 - 480*y^6 + 120*y^5 + 200*y^4 - 80*y^3)*x^5/5! + (244*y^15 - 2148*y^14 + 7048*y^13 - 13684*y^12 + 20236*y^11 - 25128*y^10 + 26864*y^9 - 25128*y^8 + 20236*y^7 - 13684*y^6 + 7048*y^5 - 2148*y^4 + 244*y^3)*x^6/6! +...
Also, we have the relation
A'^2 + B'^2 + C'^2 = (1+y^2)*(A^4 + B^4 + C^4) - (1+y^3)^2
where
A^4 + B^4 + C^4 = (y^4 + 1) + (4*y^5 - 8*y^4 + 4*y^3)*x^2/2! + (-8*y^7 + 16*y^6 - 16*y^4 + 8*y^3)*x^3/3! + (-28*y^9 + 124*y^8 - 212*y^7 + 232*y^6 - 212*y^5 + 124*y^4 - 28*y^3)*x^4/4! + (80*y^11 - 200*y^10 - 200*y^9 + 680*y^8 - 680*y^6 + 200*y^5 + 200*y^4 - 80*y^3)*x^5/5! + (244*y^13 - 2148*y^12 + 6804*y^11 - 11536*y^10 + 13432*y^9 - 13592*y^8 + 13432*y^7 - 11536*y^6 + 6804*y^5 - 2148*y^4 + 244*y^3)*x^6/6! +...
PROG
(PARI) {T(n, k) = my(A=x, B=1, C=y); for(i=1, n,
A = intformal(B*C^2 - B^2*C +x*O(x^n));
B = 1 + intformal(C*A^2 - C^2*A);
C = y + intformal(A*B^2 - A^2*B); ); polcoeff( n!*polcoeff(A, n, x), k, y)}
for(n=1, 10, for(k=1, 2*n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A278886 (B(x,y)), A278887 (C(x,y)), A278888 (central terms).
Cf. A278746 (A at y=2), A278747 (B at y=2), A278748 (C at y=2).
Sequence in context: A105198 A133882 A092106 * A183049 A178086 A353296
KEYWORD
sign,tabf
AUTHOR
Paul D. Hanna, Dec 19 2016
STATUS
approved