login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110549
Period 8: repeat [1, 2, 4, 3, 3, 4, 2, 1].
7
1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1
OFFSET
0,2
COMMENTS
Permutation of {1,2,3,4} followed by its reversal, repeated.
Continued fraction expansion of (337 + sqrt(905669))/890 = 1.44793981253727... - R. J. Mathar, Mar 08 2012
FORMULA
G.f.: (1 + x + 3*x^2 + 3*x^4 + x^5 + x^6)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7). [corrected by Georg Fischer, May 15 2019]
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7);
a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 5/2.
a(n) = 1 + A105198(n).
a(n) = 1 + (A000217(n) mod 4). - Jon E. Schoenfield, Aug 11 2017
MATHEMATICA
PadRight[{}, 120, {1, 2, 4, 3, 3, 4, 2, 1}] (* Harvey P. Dale, May 12 2015 *)
PROG
(PARI) a(n)=[1, 2, 4, 3, 3, 4, 2, 1][n%8+1] \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
One more than A105198.
Sequence in context: A299920 A352962 A137363 * A378814 A174574 A161413
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jul 26 2005
STATUS
approved