login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110552
A triangular array related to A077028 and distributing the values of A007582.
1
1, 1, 2, 1, 5, 4, 1, 10, 17, 8, 1, 19, 51, 49, 16, 1, 36, 134, 196, 129, 32, 1, 69, 330, 650, 645, 321, 64, 1, 134, 783, 1940, 2575, 1926, 769, 128, 1, 263, 1813, 5411, 8995, 8981, 5383, 1793, 256, 1, 520, 4124, 14392, 28742, 35896, 28700, 14344, 4097, 512, 1, 1033, 9252, 36948, 86142, 129150, 129108, 86052, 36873, 9217, 1024
OFFSET
1,3
COMMENTS
Let T(r,c) be the array A077028. Fill 2^k numbers in Gaussian templates conforming to the row lengths determined by T(r,c). A110552 results from summing the numbers on each row.
LINKS
FORMULA
Table entries appear to be given by T(n,k) = binomial(n-2,k-1) + 2^(n-1)*binomial(n-2,k-2), n,k >= 1, leading to the e.g.f. (exp((1+x)*u) - 1)*(x*exp((1+x)*u) + x + 2)/(2*(1+x)^2) = u + (1+2*x)*u^2/2! + (1+5*x+4*x^2)*u^3/3! + .... Cf. A111049. - Peter Bala, Jul 27 2012
EXAMPLE
The filled templates begin
1
.1
.2
..1
..2.3
..4
....1
....2.3.5
....4.6.7
....8
therefore the sequence begins
1
1 2
1 5 4
1 10 17 8
...
MATHEMATICA
T[n_, k_] := Binomial[n - 2, k - 1] + 2^(n - 1)*Binomial[n - 2, k - 2]; Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Aug 31 2017 *)
PROG
(PARI) for(n=1, 20, for(k=1, n, print1(binomial(n - 2, k - 1) + 2^(n - 1)*binomial(n - 2, k - 2), ", "))) \\ G. C. Greubel, Aug 31 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alford Arnold, Jul 26 2005
STATUS
approved