login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111049
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
1
1, 1, 1, 1, 3, 2, 1, 6, 9, 4, 1, 11, 27, 25, 8, 1, 20, 70, 100, 65, 16, 1, 37, 170, 330, 325, 161, 32, 1, 70, 399, 980, 1295, 966, 385, 64, 1, 135, 917, 2723, 4515, 4501, 2695, 897, 128, 1, 264, 2076, 7224, 14406, 17976, 14364, 7176, 2049, 256
OFFSET
0,5
FORMULA
T(n, k) = 2^(n-1)binomial(n-1, k-1) + binomial(n-1, k).
Sum_{k=0..n} T(n, k) = 2^(n-1)*(1+2^(n-1)) = A063376(n-1) for n >= 1.
From Peter Bala, Mar 20 2013: (Start)
O.g.f.: (1 - 2*t + x*t*(t-2) + x^2*t^2)/((1 - t*(1+x))*(1 - 2*t*(1+x))) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
E.g.f.: (x + 2*exp((1+x)*t) + x*exp(2*t*(1+x)))/(2*(1+x)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2/2! + ....
Recurrence equation: for n >= 1, T(n+1,k) = 2*T(n,k) + 2*T(n,k-1) - binomial(n,k). (End)
From Philippe Deléham, Oct 18 2013: (Start)
G.f.: (1 - 2*x - 2*x*y + x^2*y + x^2*y^2)/(1 - 3*x - 3*x*y + 2*x^2 + 4*x^2*y + 2*x^2*y^2).
T(n,k) = 3*T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k) - 4*T(n-2,k-1) - 2*T(n-2,k-2), T(0,0) = T(1,1) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(2,2) = 2, T(n,k) = 0 if k > n or if k < 0. (End)
EXAMPLE
Rows begin:
1;
1, 1;
1, 3, 2;
1, 6, 9, 4;
1, 11, 27, 25, 8;
1, 20, 70, 100, 65, 16;
1, 37, 170, 330, 325, 161, 32;
1, 70, 399, 980, 1295, 966, 385, 64;
1, 135, 917, 2723, 4515, 4501, 2695, 897, 128;
1, 264, 2076, 7224, 14406, 17976, 14364, 7176, 2049, 256;
MATHEMATICA
With[{m = 9}, CoefficientList[CoefficientList[Series[(1 - 2*x - 2*x*y + x^2 *y + x^2*y^2)/(1 - 3*x - 3*x*y + 2*x^2 + 4*x^2*y + 2*x^2*y^2), {x, 0 , m}, {y, 0, m} ], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
PROG
(PARI) T(n, k) = if (k<=n, 2^(n-1)*binomial(n-1, k-1)+binomial(n-1, k));
matrix(10, 10, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020
CROSSREFS
Sequence in context: A181897 A337977 A212207 * A211955 A088617 A190909
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 07 2005
EXTENSIONS
Wrong a(42) removed by Georg Fischer, Feb 17 2020
STATUS
approved