|
|
A002064
|
|
Cullen numbers: a(n) = n*2^n + 1.
(Formerly M2795 N1125)
|
|
67
|
|
|
1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985, 402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 32212254721
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 26 2010
Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ....2^n-1/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4 with 5+4=9=a(2); for 5/4 + 7/8 = 17/8 with 17+8=25=a(3); for 17/8 + 15/16= 49/16 with 49+16=65=a(4); 49/16 +31/32=129/32 with 129+32=161=a(5). For each pairwise sum a/b, a+b=n*2^(n+1). - J. M. Bergot, May 06 2015
Number of divisors of (2^n)^(2^n). - Gus Wiseman, May 03 2021
Named after the Irish Jesuit priest James Cullen (1867-1933) who checked the primality of the terms up to n=100. - Amiram Eldar, Jun 05 2021
|
|
REFERENCES
|
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
R. K. Guy, Unsolved Problems in Number Theory, B20.
W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
James Cullen, Question 15897, Educational Times, Vol. 58 (December 1905), p. 534.
|
|
FORMULA
|
a(n) = 4a(n-1) - 4a(n-2) + 1. - Paul Barry, Jun 12 2003
a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Harvey P. Dale, Oct 13 2011
|
|
EXAMPLE
|
G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - Michael Somos, Jul 18 2018
|
|
MAPLE
|
A002064:=-(1-2*z+2*z**2)/((z-1)*(-1+2*z)**2); # conjectured by Simon Plouffe in his 1992 dissertation
|
|
MATHEMATICA
|
LinearRecurrence[{5, -8, 4}, {1, 3, 9}, 51] (* Harvey P. Dale, Oct 13 2011 *)
CoefficientList[Series[(1 - 2 x + 2 x^2)/((1 - x) (2 x - 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
|
|
PROG
|
(Haskell)
a002064 n = n * 2 ^ n + 1
a002064_list = 1 : 3 : (map (+ 1) $ zipWith (-) (tail xs) xs)
where xs = map (* 4) a002064_list
|
|
CROSSREFS
|
A188385 gives the highest prime exponent in n^n.
|
|
KEYWORD
|
nonn,easy,nice,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|