login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050914
a(n) = n*3^n + 1.
5
1, 4, 19, 82, 325, 1216, 4375, 15310, 52489, 177148, 590491, 1948618, 6377293, 20726200, 66961567, 215233606, 688747537, 2195382772, 6973568803, 22082967874, 69735688021, 219667417264, 690383311399, 2165293113022, 6778308875545, 21182215236076, 66088511536555, 205891132094650
OFFSET
0,2
LINKS
Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
FORMULA
From Colin Barker, Oct 14 2012: (Start)
a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3).
G.f.: -(6*x^2 - 3*x + 1)/((x-1)*(3*x-1)^2). (End)
E.g.f.: exp(x)*(3*x*exp(2*x) + 1). - Elmo R. Oliveira, Sep 09 2024
MATHEMATICA
Table[n*3^n+1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -15, 9}, {1, 4, 19}, 30] (* Harvey P. Dale, Nov 07 2012 *)
PROG
(Magma) [ n*3^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
(PARI) a(n)=n*3^n+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Equals A036290(n) + 1.
Sequence in context: A181300 A027240 A326649 * A017961 A180146 A017962
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 30 1999
STATUS
approved