The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050915 a(n) = n*4^n + 1. 4
 1, 5, 33, 193, 1025, 5121, 24577, 114689, 524289, 2359297, 10485761, 46137345, 201326593, 872415233, 3758096385, 16106127361, 68719476737, 292057776129, 1236950581249, 5222680231937, 21990232555521, 92358976733185 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Paul Leyland, Factors of Cullen and Woodall numbers. Paul Leyland, Generalized Cullen and Woodall numbers. Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT]. Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10. Index entries for linear recurrences with constant coefficients, signature (9,-24,16). FORMULA From Colin Barker, Oct 14 2012: (Start) a(n) = 9*a(n-1) - 24*a(n-2) + 16*a(n-3). G.f.: -(12*x^2 - 4*x + 1)/((x-1)*(4*x-1)^2). (End) E.g.f.: exp(x)*(1 + 4*exp(3*x)*x). - Stefano Spezia, Jan 05 2020 MATHEMATICA CoefficientList[Series[-(12 x^2 - 4 x + 1)/((x - 1) (4 x - 1)^2), {x, 0, 21}], x] (* Michael De Vlieger, Jan 04 2020 *) PROG (MAGMA) [ n*4^n+1: n in [0..30]]; // Vincenzo Librandi, Sep 16 2011 CROSSREFS Cf. A002064. Sequence in context: A270726 A308679 A272833 * A091056 A244901 A197675 Adjacent sequences:  A050912 A050913 A050914 * A050916 A050917 A050918 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 30 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 09:28 EDT 2021. Contains 343940 sequences. (Running on oeis4.)