login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057156
Number of functions from {0,1}^n to {0,1}^n.
9
1, 4, 256, 16777216, 18446744073709551616, 1461501637330902918203684832716283019655932542976, 39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306816
OFFSET
0,2
COMMENTS
a(n) is the number of subdivisions of the Brownian motion on the unit interval at the n-th stage of subdivision. - Stephen Crowley, Apr 12 2007
REFERENCES
François Robert, Discrete Iterations: A Metric Study, Springer-Verlag, 1986, p. 167.
Norbert Wiener, Nonlinear Problems in Random Theory, MIT Press Classic, 1958, Lecture 1.
LINKS
FORMULA
a(n) = (2^n)^(2^n) = A000312(A000079(n)) = A000079(A036289(n)) = A001146(n)^n = A000722(n) + A057157(n).
Sum_{n>=1} 1/a(n) = A134880. - Amiram Eldar, Nov 15 2020
EXAMPLE
a(1)=4 since the possibilities are f(0)=0, f(1)=0; f(0)=0, f(1)=1; f(0)=1, f(1)=0; f(0)=1, f(1)=1.
For n=3: we need to count maps from a set with 8 points to a set with 8 points. There are 8^8 such functions, that is, a(3) = 8^8 = 2^24 = 16777216. - N. J. A. Sloane, Mar 05 2023
MATHEMATICA
lst={}; Do[AppendTo[lst, (2^n)^(2^n)], {n, 0, 8}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 02 2009 *)
PROG
(PARI) a(n)=1<<(n<<n) \\ Charles R Greathouse IV, Jan 19 2012
KEYWORD
easy,nice,nonn
AUTHOR
Henry Bottomley, Aug 15 2000
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Mar 02 2009
STATUS
approved