login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057159
Numbers k that divide s(k-1), where s(1) = 1, s(k) = s(k-1) + (k+1)*3^k.
1
4, 13, 35, 52, 95, 119, 169, 676, 11596, 57577, 159484, 276773, 360139, 1345747, 56193997, 60640957, 604170268, 807129973
OFFSET
1,1
COMMENTS
No other terms below 300000. - Vaclav Kotesovec, May 05 2018
{s(n)} = {1, 28, 136, 541, 1999, 7102, 24598, ...}; 4*s(n) = 3^(n+1)*(2n+1) - 23, with g.f. x*(-1-21*x+45*x^2) / ( (x-1)*(-1+3*x)^2 ). - R. J. Mathar, May 05 2018
MATHEMATICA
seq = RecurrenceTable[{s[n] == s[n - 1] + (n + 1)*3^n, s[1] == 1}, s, {n, 1, 20000}]; Select[Range[1, Length[seq]], Divisible[seq[[# - 1]], #] &] (* Vaclav Kotesovec, May 05 2018 *)
CROSSREFS
Sequence in context: A127981 A296303 A089453 * A189588 A266357 A095941
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 13 2000
EXTENSIONS
Minor edits by Altug Alkan, May 05 2018
a(10)-a(12) from Vaclav Kotesovec, May 05 2018
a(13)-a(14) from Chai Wah Wu, Aug 26 2021
a(15)-a(16) from Chai Wah Wu, Sep 02 2021
a(17)-a(18) from Sean A. Irvine, May 25 2022
STATUS
approved