Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2795 N1125 #187 Nov 26 2024 13:28:00
%S 1,3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,
%T 491521,1048577,2228225,4718593,9961473,20971521,44040193,92274689,
%U 192937985,402653185,838860801,1744830465,3623878657,7516192769,15569256449,32212254721,66571993089
%N Cullen numbers: a(n) = n*2^n + 1.
%C Binomial transform is A084859. Inverse binomial transform is A004277. - _Paul Barry_, Jun 12 2003
%C Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - _Milan Janjic_, Jan 26 2010
%C Indices of primes are listed in A005849. - _M. F. Hasler_, Jan 18 2015
%C Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ... + (2^n - 1)/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4, 5 + 4 = 9 = a(2); for 5/4 + 7/8 = 17/8, 17 + 8 = 25 = a(3); for 17/8 + 15/16 = 49/16, 49 + 16 = 65 = a(4); for 49/16 + 31/32 = 129/32, 129 + 32 = 161 = a(5). For each pairwise sum a/b, a + b = n*2^(n+1). - _J. M. Bergot_, May 06 2015
%C Number of divisors of (2^n)^(2^n). - _Gus Wiseman_, May 03 2021
%C Named after the Irish Jesuit priest James Cullen (1867-1933), who checked the primality of the terms up to n=100. - _Amiram Eldar_, Jun 05 2021
%D G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
%D R. K. Guy, Unsolved Problems in Number Theory, B20.
%D W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A002064/b002064.txt">Table of n, a(n) for n=0..300</a>
%H Ray Ballinger, <a href="http://web.archive.org/web/20161028015144/http://www.prothsearch.net/cullen.html">Cullen Primes: Definition and Status</a>.
%H Attila Bérczes, István Pink, and Paul Thomas Young, <a href="https://doi.org/10.1016/j.jnt.2024.03.006">Cullen numbers and Woodall numbers in generalized Fibonacci sequences</a>, J. Num. Theor. (2024) Vol. 262, 86-102.
%H Yuri Bilu, Diego Marques, and Alain Togbé, <a href="https://doi.org/10.1016/j.jnt.2018.11.025">Generalized Cullen numbers in linear recurrence sequences</a>, Journal of Number Theory, Vol. 202 (2019), pp. 412-425; <a href="https://arxiv.org/abs/1806.09441">arXiv preprint</a>, arXiv:1806.09441 [math.NT], 2018.
%H Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, <a href="https://arxiv.org/abs/2108.04302">Restricted generating trees for weak orderings</a>, arXiv:2108.04302 [math.CO], 2021.
%H C. K. Caldwell, <a href="https://t5k.org/top20/page.php?id=6">The Top Twenty: Cullen Primes</a>.
%H James Cullen, <a href="https://archive.org/details/educationaltimes58educ/page/534/mode/2up">Question 15897</a>, Educational Times, Vol. 58 (December 1905), p. 534.
%H Orhan Eren and Yüksel Soykan, <a href="https://doi.org/10.9734/ACRI/2023/v23i8611">Gaussian Generalized Woodall Numbers</a>, Arch. Current Res. Int'l (2023) Vol. 23, Iss. 8, Art. No. ACRI.108618, 48-68. See p. 50.
%H Orhan Eren and Yüksel Soykan, <a href="https://doi.org/10.9734/acri/2024/v24i11981">On Dual Hyperbolic Generalized Woodall Numbers</a>, Archives Current Res. Int'l (2024) Vol. 24, Iss. 11, Art. No. ACRI.126420, 398-423. See p. 401.
%H Jon Grantham and Hester Graves, <a href="https://arxiv.org/abs/2009.04052">The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits</a>, arXiv:2009.04052 [math.NT], 2020.
%H José María Grau and Florian Luca, <a href="https://doi.org/10.1090/S0002-9939-2011-10899-2">Cullen numbers with the Lehmer property</a>, Proceedings of the American Mathematical Society, Vol. 140, No. 1 (2012), pp. 129-134; <a href="http://arxiv.org/abs/1103.3578">arXiv preprint</a>, arXiv:1103.3578 [math.NT], Mar 18 2011.
%H Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/cw.htm">Factors of Cullen and Woodall numbers</a>.
%H Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/gcw.htm">Generalized Cullen and Woodall numbers</a>.
%H Diego Marques, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Marques/marques5r2.html">On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.4.
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/">Factorizations of many number sequences</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha118.htm">Cullen numbers (n = 1 to 100)</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha119.htm">(n = 101 to 200)</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha120.htm">(n = 201 to 300)</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha121.htm">(n = 301 to 323)</a>.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de Séries Génératrices et Quelques Conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H Wacław Sierpiński, <a href="http://matwbn.icm.edu.pl/kstresc.php?tom=42&wyd=10">Elementary Theory of Numbers</a>, Warszawa 1964.
%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.2634312">On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers</a>, Politecnico di Torino (Italy, 2019).
%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.18483/ijSci.2044">Composition Operations of Generalized Entropies Applied to the Study of Numbers</a>, International Journal of Sciences, Vol. 8, No. 4 (2019), pp. 87-92.
%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.3471358">The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences</a>, Politecnico di Torino, Italy (2019), [math.NT].
%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.18483/ijSci.2188">Some Groupoids and their Representations by Means of Integer Sequences</a>, International Journal of Sciences, Vol. 8, No. 10 (2019).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CullenNumber.html">Cullen Number</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Cullen_prime">Cullen number</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,4).
%F a(n) = 4a(n-1) - 4a(n-2) + 1. - _Paul Barry_, Jun 12 2003
%F a(n) = sum of row (n+1) of triangle A130197. Example: a(3) = 25 = (12 + 8 + 4 + 1), row 4 of A130197. - _Gary W. Adamson_, May 16 2007
%F Row sums of triangle A134081. - _Gary W. Adamson_, Oct 07 2007
%F Equals row sums of triangle A143038. - _Gary W. Adamson_, Jul 18 2008
%F Equals row sums of triangle A156708. - _Gary W. Adamson_, Feb 13 2009
%F G.f.: -(1-2*x+2*x^2)/((-1+x)*(2*x-1)^2). a(n) = A001787(n+1)+1-A000079(n). - _R. J. Mathar_, Nov 16 2007
%F a(n) = 1 + 2^(n + log_2(n)) ~ 1 + A000079(n+A004257(n)). a(n) ~ A000051(n+A004257(n)). - _Jonathan Vos Post_, Jul 20 2008
%F a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - _Harvey P. Dale_, Oct 13 2011
%F a(n) = A036289(n) + 1 = A003261(n) + 2. - _Reinhard Zumkeller_, Mar 16 2013
%F E.g.f.: 2*x*exp(2*x) + exp(x). - _Robert Israel_, Dec 12 2014
%F a(n) = 2^n * A000325(n) = 4^n * A186947(-n) for all n in Z. - _Michael Somos_, Jul 18 2018
%F a(n) = Sum_{i=0..n-1} a(i) + A000325(n+1). - _Ivan N. Ianakiev_, Aug 07 2019
%F a(n) = sigma((2^n)^(2^n)) = A000005(A057156(n)) = A062319(2^n). - _Gus Wiseman_, May 03 2021
%F Sum_{n>=0} 1/a(n) = A340841. - _Amiram Eldar_, Jun 05 2021
%e G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018
%p A002064:=-(1-2*z+2*z**2)/((z-1)*(-1+2*z)**2); # conjectured by _Simon Plouffe_ in his 1992 dissertation
%t Table[n*2^n+1,{n,0,2*4!}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 25 2010 *)
%t LinearRecurrence[{5,-8,4},{1,3,9},51] (* _Harvey P. Dale_, Oct 13 2011 *)
%t CoefficientList[Series[(1 - 2 x + 2 x^2)/((1 - x) (2 x - 1)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, May 07 2015 *)
%o (PARI) A002064(n)=n*2^n+1 \\ _M. F. Hasler_, Oct 31 2012
%o (Haskell)
%o a002064 n = n * 2 ^ n + 1
%o a002064_list = 1 : 3 : (map (+ 1) $ zipWith (-) (tail xs) xs)
%o where xs = map (* 4) a002064_list
%o -- _Reinhard Zumkeller_, Mar 16 2013
%o (Magma) [n*2^n + 1: n in [0..40]]; // _Vincenzo Librandi_, May 07 2015
%Y Cf. A005849, A003261, A050914, A130197, A134081, A001787, A143038, A156708, A181527.
%Y Cf. A000325, A186947.
%Y Diagonal k = n + 1 of A046688.
%Y A000005 counts divisors of n.
%Y A000312 = n^n.
%Y A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
%Y A057156 = (2^n)^(2^n).
%Y A062319 counts divisors of n^n.
%Y A173339 lists positions of squares in A062319.
%Y A188385 gives the highest prime exponent in n^n.
%Y A249784 counts divisors of n^n^n.
%Y Cf. A000169, A000272, A036289, A066959, A176029, A340841, A343656.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_
%E Edited by _M. F. Hasler_, Oct 31 2012