login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002063
a(n) = 9*4^n.
25
9, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744, 633318697598976
OFFSET
0,1
COMMENTS
a(n) is twice the area of the trapezoid created by the four points (2^n,2^(n+1)), (2^(n+1), 2^n), (2^(n+1), 2^(n+2)), (2^(n+2), 2^(n+1)). - J. M. Bergot, May 23 2014
These are squares that can be expressed as sum of exactly two distinct powers of two. For instance, a(4) = 9*4^4 = 2304 = 2^11 + 2^8 . It is conjectured that these are the only squares with this characteristic (tested on squares up to (10^7)^2). - Andres Cicuttin, Apr 23 2016
Conjecture is true. It is equivalent to prove that the Diophantine equation m^2 = 2^k*(1+2^h), where h>0, has solutions only when h=3. Dividing by 2^k we must obtain an odd square on the left, since 1+2^h is odd, so we can write (2*r+1)^2 = 1+2^h. Expanding, we have 4*r*(r+1) = 2^h, from which it follows that r must be equal to 1 and thus h=3, since r and r+1 must be powers of 2. - Giovanni Resta, Jul 27 2017
FORMULA
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 4*a(n-1), n > 0; a(0)=9.
G.f.: 9/(1-4*x). (End)
a(n) = 9*A000302(n). - Michel Marcus, Apr 23 2016
E.g.f.: 9*exp(4*x). - Ilya Gutkovskiy, Apr 23 2016
a(n) = 2^(2*n+3) + 2^(2*n). - Andres Cicuttin, Apr 26 2016
a(n) = A004171(n+1) + A000302(n). - Zhandos Mambetaliyev, Nov 19 2016
MATHEMATICA
9*4^Range[0, 100] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
NestList[4#&, 9, 30] (* Harvey P. Dale, Jan 15 2019 *)
PROG
(Magma) [9*4^n: n in [0..30]]; // Vincenzo Librandi, May 19 2011
(PARI) a(n)=9<<n \\ Charles R Greathouse IV, Apr 17 2012
CROSSREFS
Essentially the same as A055841. First differences of A002001.
Cf. A000302.
Sequence in context: A285241 A231431 A264515 * A285674 A075674 A245416
KEYWORD
nonn,easy
STATUS
approved