login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002060 Number of partitions of a n-gon into (n-5) parts.
(Formerly M3691 N1509)
4
4, 60, 550, 4004, 25480, 148512, 813960, 4263600, 18573816 (list; graph; refs; listen; history; text; internal format)
OFFSET

7,1

COMMENTS

a(n) = V(r=n,k=n-5), 4th subdiagonal of the triangle of V on page 240.

It appears that V(r=15,k=10) in the Cayley table is an error, so the sequence was intended to be 4, 60, 550, 4004, 25480, 148512, 813960, 4263600, 21573816, 106234700, 511801290, 2421810300, 11289642000, 51967090560, 236635858800... - R. J. Mathar, Nov 26 2011

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=7..15.

A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.

MAPLE

V := proc(r, k)

        local a , t;

        a := k-1;

        for t from k-2 to 1 by -1 do

                a := a*(r+t)/(t+2) ;

        end do:

        for t from 3 to k+1 do

                a := a*(r-t)/(k-t+2) ;

        end do:

        a ;

end proc:

A002060 := proc(n)

        V(n, n-5) ;

end proc:

seq(A002060(n), n=7..25) ; # R. J. Mathar, Nov 26 2011

CROSSREFS

Cf. A002058, A002059.

Sequence in context: A234952 A112041 A210425 * A247739 A007220 A034866

Adjacent sequences:  A002057 A002058 A002059 * A002061 A002062 A002063

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 15:32 EDT 2021. Contains 343792 sequences. (Running on oeis4.)