login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285241
Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^2).
7
1, 1, 9, 36, 140, 481, 1774, 5925, 20076, 64980, 208486, 652058, 2017023, 6117878, 18347256, 54222195, 158463794, 457570786, 1307951914, 3700153918, 10371860026, 28810051738, 79359812567, 216834266612, 587961817595, 1582612248239, 4230325722508
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * n^8 * 3^(n/3), where
if mod(n,3) = 0 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560142\
40331306860864399770618296475558098172993864629247911801570500913143642\
65158886200452165335605783203726486071335...
if mod(n,3) = 1 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560112\
77299895134841028015999951571187798033179513268954711586617617334007687\
07198348808962592621276659532114355538024...
if mod(n,3) = 2 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560117\
00278534968233203470801053870003971422069097966617636511346003845666735\
79293861331368526745743422198017148868212...
In closed form, a(n) ~ -(27*Product_{k>=4}((1 - k / 3^(k/3))^(-k^2)) / (13 + 128*3^(1/3) - 95*3^(2/3)) + 243*Product_{k>=4}((1 + (-1)^(1 + 2*k/3) * k / 3^(k/3))^(-k^2)) / ((-1)^(2*n/3) * ((3 + 2*(-3)^(1/3))^4 * (-3 + (-3)^(2/3)))) + (-1)^(1 - 4*n/3) * Product_{k>=4}((1 + (-1)^(1 + 4*k/3) * k / 3^(k/3))^(-k^2)) / ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^4)) / 793618560 * n^8 * 3^(n/3).
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 15 2017
STATUS
approved