The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285241 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^2). 7
 1, 1, 9, 36, 140, 481, 1774, 5925, 20076, 64980, 208486, 652058, 2017023, 6117878, 18347256, 54222195, 158463794, 457570786, 1307951914, 3700153918, 10371860026, 28810051738, 79359812567, 216834266612, 587961817595, 1582612248239, 4230325722508 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 FORMULA a(n) ~ c * n^8 * 3^(n/3), where if mod(n,3) = 0 then c = 3435237242728465092737309192093188152686332293\ 03276380306112638865540880372901642880694943679256417087889777743957063\ 209444405157397505005623042846150296486667845382334521513094023.8560142\ 40331306860864399770618296475558098172993864629247911801570500913143642\ 65158886200452165335605783203726486071335... if mod(n,3) = 1 then c = 3435237242728465092737309192093188152686332293\ 03276380306112638865540880372901642880694943679256417087889777743957063\ 209444405157397505005623042846150296486667845382334521513094023.8560112\ 77299895134841028015999951571187798033179513268954711586617617334007687\ 07198348808962592621276659532114355538024... if mod(n,3) = 2 then c = 3435237242728465092737309192093188152686332293\ 03276380306112638865540880372901642880694943679256417087889777743957063\ 209444405157397505005623042846150296486667845382334521513094023.8560117\ 00278534968233203470801053870003971422069097966617636511346003845666735\ 79293861331368526745743422198017148868212... In closed form, a(n) ~ -(27*Product_{k>=4}((1 - k / 3^(k/3))^(-k^2)) / (13 + 128*3^(1/3) - 95*3^(2/3)) + 243*Product_{k>=4}((1 + (-1)^(1 + 2*k/3) * k / 3^(k/3))^(-k^2)) / ((-1)^(2*n/3) * ((3 + 2*(-3)^(1/3))^4 * (-3 + (-3)^(2/3)))) + (-1)^(1 - 4*n/3) * Product_{k>=4}((1 + (-1)^(1 + 4*k/3) * k / 3^(k/3))^(-k^2)) / ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^4)) / 793618560 * n^8 * 3^(n/3). MATHEMATICA nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A006906, A023871, A266941, A285240, A285243. Sequence in context: A353389 A023872 A034557 * A231431 A264515 A002063 Adjacent sequences: A285238 A285239 A285240 * A285242 A285243 A285244 KEYWORD nonn AUTHOR Vaclav Kotesovec, Apr 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 23:37 EST 2023. Contains 367681 sequences. (Running on oeis4.)