The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292326 p-INVERT of (1,1,1,0,0,0,0,0,0,0,0,...), where p(S) = (1 - S)^3. 1
 3, 9, 25, 63, 153, 359, 819, 1830, 4018, 8694, 18582, 39298, 82350, 171186, 353338, 724719, 1478061, 2999175, 6057687, 12183945, 24411935, 48740193, 96998325, 192459996, 380812692, 751557756, 1479686972, 2906717460, 5698014924, 11147786740, 21769549380 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3, 0, -2, -6, 0, 4, 6, 3, 1) FORMULA G.f.: -(((1 + x + x^2) (3 - 3 x - 2 x^2 - x^3 + 3 x^4 + 2 x^5 + x^6))/(-1 + x + x^2 + x^3)^3). a(n) = 3*a(n-1) - 2*a(n-3) - 6*a(n-4) + 4*a(n-6) + 6*a(n-7) + 3*a(n-8) + a(n-9) for n >= 10. MATHEMATICA z = 60; s = x + x^2 + x^3; p = (1 - s)^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292326 *) LinearRecurrence[{3, 0, -2, -6, 0, 4, 6, 3, 1}, {3, 9, 25, 63, 153, 359, 819, 1830, 4018}, 40] (* Harvey P. Dale, Nov 01 2019 *) CROSSREFS Cf. A292324. Sequence in context: A065971 A145127 A096260 * A195417 A295142 A002064 Adjacent sequences: A292323 A292324 A292325 * A292327 A292328 A292329 KEYWORD nonn,easy AUTHOR Clark Kimberling, Sep 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)