login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292326
p-INVERT of (1,1,1,0,0,0,0,0,0,0,0,...), where p(S) = (1 - S)^3.
1
3, 9, 25, 63, 153, 359, 819, 1830, 4018, 8694, 18582, 39298, 82350, 171186, 353338, 724719, 1478061, 2999175, 6057687, 12183945, 24411935, 48740193, 96998325, 192459996, 380812692, 751557756, 1479686972, 2906717460, 5698014924, 11147786740, 21769549380
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
LINKS
FORMULA
G.f.: -(((1 + x + x^2) (3 - 3 x - 2 x^2 - x^3 + 3 x^4 + 2 x^5 + x^6))/(-1 + x + x^2 + x^3)^3).
a(n) = 3*a(n-1) - 2*a(n-3) - 6*a(n-4) + 4*a(n-6) + 6*a(n-7) + 3*a(n-8) + a(n-9) for n >= 10.
MATHEMATICA
z = 60; s = x + x^2 + x^3; p = (1 - s)^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292326 *)
LinearRecurrence[{3, 0, -2, -6, 0, 4, 6, 3, 1}, {3, 9, 25, 63, 153, 359, 819, 1830, 4018}, 40] (* Harvey P. Dale, Nov 01 2019 *)
CROSSREFS
Cf. A292324.
Sequence in context: A145127 A096260 A375135 * A195417 A295142 A002064
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 15 2017
STATUS
approved