login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292328
p-INVERT of the Fibonacci sequence (A000045), where p(S) = (1 - S)^3.
3
3, 9, 28, 84, 246, 707, 2001, 5592, 15461, 42357, 115122, 310716, 833472, 2223471, 5902415, 15598896, 41058423, 107673601, 281416248, 733229412, 1904957434, 4936026747, 12758472189, 32901998472, 84667043769, 217437602349, 557361593902, 1426167813324
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
FORMULA
G.f.: (3 - 9*x + x^2 + 9*x^3 + 3*x^4)/(1 - 2*x - x^2)^3.
a(n) = 6*a(n-1) - 9*a(n-2) - 4*a(n-3) + 9*a(n-4) + 6*a(n-5) + a(n-6) for n >= 7.
MATHEMATICA
z = 60; s = x/(1 - x - x^2); p = (1 - s)^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000045 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292328 *)
LinearRecurrence[{6, -9, -4, 9, 6, 1}, {3, 9, 28, 84, 246, 707}, 30] (* Harvey P. Dale, Jul 01 2022 *)
PROG
(PARI) x='x+O('x^99); Vec((3-9*x+x^2+9*x^3+3*x^4)/(1-2*x-x^2)^3) \\ Altug Alkan, Oct 03 2017
CROSSREFS
Sequence in context: A047134 A184698 A027099 * A027090 A033139 A372870
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 15 2017
STATUS
approved