login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292327
p-INVERT of the Fibonacci sequence (A000045), where p(S) = (1 - S)^2.
2
2, 5, 14, 38, 102, 271, 714, 1868, 4858, 12569, 32374, 83058, 212350, 541219, 1375570, 3487384, 8821170, 22266413, 56098206, 141087934, 354268502, 888238903, 2223968666, 5561234916, 13889778218, 34652529473, 86361653126, 215021205770, 534861620718
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
FORMULA
G.f.: -(2 + x)*(-1 + 2*x)/(-1 + 2*x + x^2)^2.
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4) for n >= 5.
a(n) = A006645(n+1) +2*A000129(n+1). - R. J. Mathar, Jul 08 2022
MATHEMATICA
z = 60; s = x/(1 - x - x^2); p = (1 - s)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000045 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292327 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 15 2017
STATUS
approved