OFFSET
0,4
REFERENCES
R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (The sequences w_n and z_n)
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..2605
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
Sergio Falcon, Half self-convolution of the k-Fibonacci sequence, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8, section 3.
Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1).
FORMULA
a(n) = Sum_{k=0..n} b(k)*b(n-k) with b(k) := A000129(k).
a(n) = Sum_{k=0..floor((n-2)/2)} 2^(n-2)*(n-k-1)*binomial(n-2-k, k)*(1/4)^k, n >= 2.
From Wolfdieter Lang, Apr 11 2000: (Start)
a(n) = ((n-1)*P(n) + n*P(n-1))/4, P(n)=A000129(n).
G.f.: (x/(1 - 2*x - x^2))^2. (End)
a(n) = F'(n, 2), the derivative of the n-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
EXAMPLE
G.f. = x^2 + 4*x^3 + 14*x^4 + 44*x^5 + 131*x^6 + 376*x^7 + 1052*x^8 + ...
MAPLE
a:= n-> (Matrix(4, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -2, -4, -1][i] else 0 fi)^n) [1, 3]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 28 2008
MATHEMATICA
pell[n_] := Simplify[ ((1+Sqrt[2])^n - (1-Sqrt[2])^n)/(2*Sqrt[2])]; a[n_] := First[ ListConvolve[ pp = Array[pell, n+1, 0], pp]]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 21 2011 *)
Table[(n Fibonacci[n - 1, 2] + (n - 1) Fibonacci[n, 2])/4, {n, 0, 30}] (* Vladimir Reshetnikov, May 08 2016 *)
PROG
(Sage) taylor( mul(x/(1 - 2*x - x^2) for i in range(1, 3)), x, 0, 28) # Zerinvary Lajos, Jun 03 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Sum formulas and cross-references added by Wolfdieter Lang, Aug 07 2002
STATUS
approved