login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007466
Exponential-convolution of natural numbers with themselves.
(Formerly M3478)
8
1, 4, 14, 44, 128, 352, 928, 2368, 5888, 14336, 34304, 80896, 188416, 434176, 991232, 2244608, 5046272, 11272192, 25034752, 55312384, 121634816, 266338304, 580911104, 1262485504, 2734686208, 5905580032, 12717129728
OFFSET
1,2
COMMENTS
Define a triangle T by T(n,1) = n*(n-1)+1 and T(r,c) = T(r,c-1) + T(r-1,c-1), then a(n) = T(n,n). - J. M. Bergot, Mar 03 2013
From David Callan, Jul 11 2014: (Start)
With offset 0, a(n) is the number of 2 X n 0-1 matrices that do not contain
1 1 0 0
0 0 or 1 1, as a 2 X 2 submatrix,
See Ju and Seo link, Theorem 3.2. (End)
a(n) is the sum of all ways of adding the k-tuples of the terms in the (n-1)-st row of Pascal's triangle A007318. For n=4 take row 3 of A007318: 1,3,3,1, giving (1)+(3)+(3)+(1)=8; (1+3)+(3+3)+(3+1)=14; (1+3+3)+(3+3+1)=14; (1+3+3+1)=8. The sum of these four terms is 8+14+14+8=44. - J. M. Bergot, Jun 17 2017
Binomial transform of A002061. - Jules Beauchamp, Jan 04 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of 0/1-matrices avoiding some 2x2 matrices, arXiv:1107.1299 [math.CO], 2011.
Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: (Sum_{n >= 1} n*x^(n-1)/(n-1)!)^2.
a(n) = 2^(n-1)*n + 2^(n-3)*(n-1)*(n-2).
a(n) = Sum_{k=0..(n+2)} C(n+2, k) * floor(k/2)^2. - Paul Barry, Mar 06 2003
E.g.f.: (1+x)^2*exp(2*x). - Vladeta Jovovic, Sep 09 2003
G.f.: x*(1 - 2*x + 2*x^2)/(1-2*x)^3. - Vladimir Kruchinin, Sep 28 2011
E.g.f.: U(0) where U(k)= 1 + 2*x/( 1 - x/(2 + x - 4/( 2 + x*(k+1)/U(k+1)))) ; (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Oct 28 2012
a(n) = A228643(n, n). - Reinhard Zumkeller, Aug 29 2013
a(n) = Sum_{k=0..n-1} A141611(n-1, k). - G. C. Greubel, Sep 22 2024
MAPLE
A007466:=n->2^(n-1)*n+1/4*2^(n-1)*(n-1)*(n-2): seq(A007466(n), n=1..30);
MATHEMATICA
Table[2^(n-1)*(n + (n-1)*(n-2)/4), {n, 30}] (* Wesley Ivan Hurt, Jul 11 2014 *)
PROG
(Haskell)
a007466 n = a228643 n n -- Reinhard Zumkeller, Aug 29 2013
(Magma) [2^(n-1)*(n+(n-1)*(n-2)/4) : n in [1..30]]; // Wesley Ivan Hurt, Jul 11 2014
(SageMath)
def A007466(n): return 2^(n-3)*(n^2+n+2)
[A007466(n) for n in range(1, 31)] # G. C. Greubel, Sep 22 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved