login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007467
Product of next n primes.
(Formerly M2085)
3
2, 15, 1001, 215441, 95041567, 66238993967, 63009974049301, 87796770491685553, 173955570033393401009, 421385360593324054690769, 1172248885422611971256631487, 5253333091597988325086927419397, 21476254926032216698855019795863013
OFFSET
1,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ronald K. Hoeflin, Titan Test.
FORMULA
From Amiram Eldar, Nov 15 2020: (Start)
Sum_{n>=1} 1/a(n) = A139395.
Sum_{n>=1} (-1)^(n+1)/a(n) = A238234 = 1 - A139396. (End)
MATHEMATICA
terms=20; With[{prs=Prime[Range[(terms(terms+1))/2]]}, Table[ Times@@ Take[prs, {(n(n-1))/2+1, (n(n+1))/2}], {n, terms}]] (* Harvey P. Dale, Aug 06 2013 *)
With[{nn=40}, Times@@@TakeList[Prime[Range[(nn(nn+1))/2]], Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jan 15 2020 *)
PROG
(PARI) a(n)=my(s=1); forprime(p=prime(n*(n-1)/2+1), prime(n*(n+1)/2), s*=p); s \\ Charles R Greathouse IV, Aug 06 2013
(Python)
from math import prod
from sympy import prime
def a(n): return prod(prime(i) for i in range((n-1)*n//2+1, n*(n+1)//2+1))
print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Feb 15 2021
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
Corrected and extended by Harvey P. Dale, Aug 06 2013
STATUS
approved