login
A132317
a(n) = [x^(2^n)] Product_{i=0..n} (1 + x^(2^i) )^(2^(n-i)); equals column 1 of triangle A132318.
3
1, 2, 15, 1024, 7048181, 469389728563470, 2954306864416502250656677496683, 165756604793755389851497802171770083459242616940095659925793836
OFFSET
0,2
COMMENTS
Next term, a(8), has 126 digits.
EXAMPLE
a(0) = [x] (1+x) = 1;
a(1) = [x^2] (1+x)^2*(1+x^2) = 2;
a(2) = [x^4] (1+x)^4*(1+x^2)^2*(1+x^4) = 15;
a(3) = [x^8] (1+x)^8*(1+x^2)^4*(1+x^4)^2*(1+x^8) = 1024;
a(4) = [x^16] (1+x)^16*(1+x^2)^8*(1+x^4)^4*(1+x^8)^2*(1+x^16) = 7048181.
MATHEMATICA
Table[SeriesCoefficient[Product[(1 + x^(2^j))^(2^(n-j)), {j, 0, n}], {x, 0, 2^n}], {n, 0, 10}] (* Vaclav Kotesovec, Oct 09 2020 *)
PROG
(PARI) {a(n)=polcoeff(prod(i=0, n, (1 + x^(2^i) +x*O(x^(2^n)))^(2^(n-i))), 2^n)}
CROSSREFS
Sequence in context: A007542 A090604 A007467 * A068409 A359849 A096232
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 19 2007
STATUS
approved