login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132319
Expansion of q^-1 * (chi(-q) * chi(-q^7))^3 in powers of q where chi() is a Ramanujan theta function.
3
1, -3, 3, -4, 9, -12, 15, -24, 39, -52, 66, -96, 130, -168, 219, -292, 390, -492, 625, -804, 1023, -1280, 1599, -2016, 2508, -3096, 3807, -4688, 5760, -7020, 8532, -10368, 12585, -15156, 18213, -21912, 26287, -31404, 37410, -44584, 53004, -62784, 74245, -87768
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q) * eta(q^7) / (eta(q^2) * eta(q^14)))^3 in powers of q.
Euler transform of period 14 sequence [ -3, 0, -3, 0, -3, 0, -6, 0, -3, 0, -3, 0, -3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 * v - v^2 + 8 * u + 6 * u * v.
G.f. is a period 1 Fourier series which satisfies f(-1 / (14 t)) = 8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A120006.
G.f.: x^-1 * (Product_{k>0} (1 + x^k) * (1 + x^(7*k)))^-3.
a(n) = A058503(n) unless n = 0. Convolution inverse is A120006.
a(n) = -(-1)^n * exp(2*Pi*sqrt(n/7)) / (2*7^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
G.f. = 1/q - 3 + 3*q - 4*q^2 + 9*q^3 - 12*q^4 + 15*q^5 - 24*q^6 + 39*q^7 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q, q^2] QPochhammer[ q^7, q^14])^3 / q, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^7 + A) / (eta(x^2 + A) * eta(x^14 + A)))^3, n))};
CROSSREFS
Sequence in context: A065678 A022598 A107635 * A130626 A175796 A115284
KEYWORD
sign
AUTHOR
Michael Somos, Aug 18 2007
STATUS
approved