login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130626
Second differences of A130624.
2
3, 3, 4, 9, 21, 44, 87, 171, 340, 681, 1365, 2732, 5463, 10923, 21844, 43689, 87381, 174764, 349527, 699051, 1398100, 2796201, 5592405, 11184812, 22369623, 44739243, 89478484, 178956969, 357913941, 715827884, 1431655767, 2863311531
OFFSET
0,1
COMMENTS
First differences of A130625: a(n) = A130625(n+1) - A130625(n).
FORMULA
G.f.: (3-6*x+4*x^2)/((1-2*x)*(1-x+x^2)).
a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3). - Paul Curtz, Apr 24 2008
MATHEMATICA
Differences[LinearRecurrence[{3, -3, 2}, {0, 1, 5}, 40], 2] (* or *) LinearRecurrence[{3, -3, 2}, {3, 3, 4}, 40] (* Harvey P. Dale, Aug 05 2024 *)
PROG
(Magma) m:=34; S:=[ [0, 1, 3][ (n-1) mod 3 +1 ]: n in [1..m] ]; T:=[ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; U:=[ T[n+1]-T[n]: n in[1..m-1] ]; [ U[n+1]-U[n]: n in[1..m-2] ]; /* Klaus Brockhaus, Jun 21 2007 */
CROSSREFS
Sequence in context: A022598 A107635 A132319 * A175796 A115284 A202869
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 18 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jun 21 2007
STATUS
approved