login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130625
First differences of A130624.
3
1, 4, 7, 11, 20, 41, 85, 172, 343, 683, 1364, 2729, 5461, 10924, 21847, 43691, 87380, 174761, 349525, 699052, 1398103, 2796203, 5592404, 11184809, 22369621, 44739244, 89478487, 178956971, 357913940, 715827881, 1431655765, 2863311532
OFFSET
0,2
COMMENTS
a(n) = A130624(n+1) - A130624(n).
FORMULA
G.f.: (1-x)*(1+2*x)/((1-2*x)*(1-x+x^2)).
a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3). Sequence is identical to its third differences. Binomial transform of 1, 3, 0. - Paul Curtz, Nov 23 2007
MATHEMATICA
LinearRecurrence[{3, -3, 2}, {1, 4, 7}, 40] (* Harvey P. Dale, Apr 27 2015 *)
PROG
(Magma) m:=33; S:=[ [0, 1, 3][ (n-1) mod 3 +1 ]: n in [1..m] ]; T:=[ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; [ T[n+1]-T[n]: n in[1..m-1] ]; /* Klaus Brockhaus, Jun 21 2007 */
CROSSREFS
Cf. A130624, A130626 (second differences).
Sequence in context: A083839 A091176 A002974 * A104102 A074705 A352216
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 18 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jun 21 2007
STATUS
approved