login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130624
Binomial transform of A101000.
3
0, 1, 5, 12, 23, 43, 84, 169, 341, 684, 1367, 2731, 5460, 10921, 21845, 43692, 87383, 174763, 349524, 699049, 1398101, 2796204, 5592407, 11184811, 22369620, 44739241, 89478485, 178956972, 357913943, 715827883, 1431655764, 2863311529, 5726623061, 11453246124
OFFSET
0,3
FORMULA
a(0)=0, a(1)=1, a(2)=5; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
a(0)=0; a(n+1) = 2*a(n) + A119910(n).
G.f.: x*(1 + 2*x)/((1 - 2*x)*(1 - x + x^2)).
a(n) = 2^n + a(n-1) - a(n-2). - Jon Maiga, Nov 14 2018
MATHEMATICA
LinearRecurrence[{3, -3, 2}, {0, 1, 5}, 40] (* Harvey P. Dale, Mar 05 2013 *)
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(2^n) + a[n-1] - a[n-2]}, a, {n, 50}] (* Vincenzo Librandi, Nov 15 2018 *)
PROG
(PARI) {m=32; v=concat([0, 1, 5], vector(m-3)); for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} /* Klaus Brockhaus, Jun 21 2007 */
(Magma) m:=32; S:=[[0, 1, 3][(n-1) mod 3 +1]: n in [1..m]]; [&+[Binomial(i-1, k-1)*S[k]: k in [1..i]]: i in [1..m]]; /* Klaus Brockhaus, Jun 21 2007 */
(Magma) I:=[0, 1, 5]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Nov 15 2018
CROSSREFS
Cf. A101000, A119910, A130625 (first differences), A130626 (second differences).
Sequence in context: A341209 A000327 A220425 * A344846 A066869 A023172
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 18 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jun 21 2007
STATUS
approved