login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023172 Self-Fibonacci numbers: numbers k that divide Fibonacci(k). 47
1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Sequence contains all powers of 5, infinitely many multiples of 12 and other numbers (including some factors of Fibonacci(5^j), e.g., 75025).
If m is in this sequence then 5*m is (since 5*m divides 5*F(m) which in turn divides F(5*m)). Also, if m is in this sequence then F(m) is in this sequence (since if gcd(F(m),m)=m then gcd(F(F(m)),F(m)) = F(gcd(F(m),m)) = F(m)). - Max Alekseyev, Sep 20 2009
From Max Alekseyev, Nov 29 2010: (Start)
Every term greater than 1 is a multiple of 5 or 12.
Proof. Let n>1 divide Fibonacci number F(n) and let p be the smallest prime divisor of n.
If p=2, then 3|n implying further that 4|n. Hence, 12|n.
If p=5, then 5|n.
If p is different from 2 and 5, then p divides either F(p+1) or F(p-1) and thus p divides either F(gcd(n,p+1)) or F(gcd(n,p-1)). Minimality of p implies that gcd(n,p-1)=1 and gcd(n,p+1)=1 (notice that p+1 being prime implies p=2 which is not the case). Therefore, p divides F(1)=1, a contradiction to the existence of such p. (End)
Luca & Tron give an upper bound, see links. - Charles R Greathouse IV, Aug 04 2021
REFERENCES
S. Wolfram, "A new kind of science", p. 891
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 500 terms from T. D. Noe, next 4600 terms from Lars Blomberg)
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 75.
Tamas Lengyel, Divisibility Properties by Multisection, Dec 2000.
Florian Luca and Emanuele Tron, The Distribution of Self-Fibonacci Divisors, Proceedings of the Thirteenth Conference of the Canadian Number Theory Association (CNTA XIII), Ayşe Alaca, Şaban Alaca, and Kenneth Williams, ed. (2015), pp. 149-158. arXiv:1410.2489 [math.NT], 2014.
MAPLE
fmod:= proc(n, m) local M, t; uses LinearAlgebra:-Modular;
if m <= 1 then return 0 fi;
if m < 2^25 then t:= float[8] else t:= integer fi;
M:= Mod(m, <<1, 1>|<1, 0>>, t);
round(MatrixPower(m, M, n)[1, 2])
end proc:
select(n -> fmod(n, n)=0, [$1..2000]); # Robert Israel, May 10 2016
MATHEMATICA
a=0; b=1; c=1; Do[a=b; b=c; c=a+b; If[Mod[c, n]==0, Print[n]], {n, 3, 1500}]
Select[Range[1350], Mod[Fibonacci[ # ], # ]==0&] (* Harvey P. Dale *)
PROG
(Haskell)
import Data.List (elemIndices)
a023172 n = a023172_list !! (n-1)
a023172_list =
map (+ 1) $ elemIndices 0 $ zipWith mod (tail a000045_list) [1..]
-- Reinhard Zumkeller, Oct 13 2011
(PARI) is(n)=((Mod([1, 1; 1, 0], n))^n)[1, 2]==0 \\ Charles R Greathouse IV, Feb 03 2014
(Magma) [n: n in [1..2*10^3] | Fibonacci(n) mod n eq 0 ]; // Vincenzo Librandi, Sep 17 2015
CROSSREFS
Cf. A000350. See A127787 for an essentially identical sequence.
Cf. A128974 (12n does not divide Fibonacci(12n)). - Zak Seidov, Jan 10 2016
Sequence in context: A130624 A344846 A066869 * A270681 A212540 A344510
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Don Reble, Sep 07 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 12:08 EST 2024. Contains 370375 sequences. (Running on oeis4.)