login
A127787
Numbers n such that F(n) divides F(F(n)), where F(n) is a Fibonacci number.
4
1, 2, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
OFFSET
1,2
COMMENTS
It is known that for n > 2 Fibonacci(n) divides Fibonacci(m) if and only if n divides m. Therefore if the term "2" is omitted this is identical to A023172, which see for further information. - Stefan Steinerberger, Dec 20 2007
EXAMPLE
12 is a term because F(12) = 144 divides F(F(12)) = F(144) = 555565404224292694404015791808.
MAPLE
with(combinat): a:=proc(n) if type(fibonacci(fibonacci(n))/fibonacci(n), integer) then n else end if end proc: seq(a(n), n=1..40); # Emeric Deutsch, Aug 24 2007
CROSSREFS
Cf. A023172. Cf. also A000045 = Fibonacci(n), A007570 = F(F(n)), where F is a Fibonacci number, A023172 = numbers n such that n divides Fibonacci(n).
Cf. A263101.
Sequence in context: A357288 A326510 A112287 * A116733 A116721 A294868
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 13 2007
EXTENSIONS
Edited by N. J. A. Sloane, Dec 22 2007
STATUS
approved