login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132318
Triangle, read by rows, where T(n,k) = [x^(k*2^(n-1))] Product_{i=0..n-1} (1 + x^(2^i))^(2^(n-i-1)) for n>0 with T(0,0)=1.
4
1, 1, 1, 1, 2, 1, 1, 15, 15, 1, 1, 1024, 2046, 1024, 1, 1, 7048181, 60060682, 60060682, 7048181, 1, 1, 469389728563470, 72057594037927935, 143176408618728932, 72057594037927935, 469389728563470, 1, 1, 2954306864416502250656677496683
OFFSET
0,5
COMMENTS
There are n*2^(n-1)+1 coefficients in P(n) = Product_{i=0..n-1} (1 + x^(2^i))^(2^(n-i-1)) for n>0; in this triangle, row n consists of coefficients of x^(k*2^(n-1)) in P(n) as k=0..n.
LINKS
FORMULA
Row sums equal 2^(2^n - n) for n>0 - improved formula and proof by Max Alekseyev, Aug 19 2007.
EXAMPLE
Triangle begins:
1;
1,1;
1,2,1;
1,15,15,1;
1,1024,2046,1024,1;
1,7048181,60060682,60060682,7048181,1;
1,469389728563470,72057594037927935,143176408618728932,72057594037927935,469389728563470,1;
Examples:
T(2,1) = [x^(1*2)] (1+x)^2*(1+x^2) = 2;
T(3,1) = [x^(1*4)] (1+x)^4*(1+x^2)^2*(1+x^4) = 15;
T(4,3) = [x^(3*8)] (1+x)^8*(1+x^2)^4*(1+x^4)^2*(1+x^8) = 1024;
T(5,3) = [x^(3*16)] (1+x)^16*(1+x^2)^8*(1+x^4)^4*(1+x^8)^2*(1+x^16) = 60060682.
PROG
(PARI) {T(n, k)=if(n==0, 1, polcoeff(prod(i=0, n-1, (1+x^(2^i)+x*O(x^(k*2^(n-1))))^(2^(n-i-1))), k*2^(n-1)))}
CROSSREFS
Cf. A132317 (column 1), A132316.
Sequence in context: A132610 A132625 A164792 * A078089 A095836 A296524
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 19 2007
STATUS
approved