login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A296524
Number of connected (2*k)-regular graphs on 2*n+1 nodes with maximal diameter D(n,k) A294733 written as triangular array T(n,k), 1 <= k <= n.
3
1, 1, 1, 1, 2, 1, 1, 16, 4, 1, 1, 1, 266, 6, 1, 1, 5, 367860, 10786, 10, 1, 1, 19, 1
OFFSET
1,5
COMMENTS
The next term a(24) corresponding to the 6-regular graphs on 15 nodes is conjectured to be 1. It seems that there exists only one graph with diameter A294733(24)=4. Its adjacency matrix is
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 . 1 1 1 1 1 1 . . . . . . . .
2 1 . 1 1 1 1 1 . . . . . . . .
3 1 1 . 1 1 1 1 . . . . . . . .
4 1 1 1 . 1 1 1 . . . . . . . .
5 1 1 1 1 . 1 1 . . . . . . . .
6 1 1 1 1 1 . . 1 . . . . . . .
7 1 1 1 1 1 . . 1 . . . . . . .
8 . . . . . 1 1 . 1 1 1 1 . . .
9 . . . . . . . 1 . 1 1 . 1 1 1
10 . . . . . . . 1 1 . . 1 1 1 1
11 . . . . . . . 1 1 . . 1 1 1 1
12 . . . . . . . 1 . 1 1 . 1 1 1
13 . . . . . . . . 1 1 1 1 . 1 1
14 . . . . . . . . 1 1 1 1 1 . 1
15 . . . . . . . . 1 1 1 1 1 1 .
The distance of 4 is achieved between nodes 1 and 13. None of the remaining 1470293674 graphs seems to have a diameter > 3.
The conjecture is confirmed using Markus Meringer's GenReg program. Aside from the 1 shown 6-regular graph on 15 nodes with diameter 4 there are 870618932 graphs with diameter 2 and 599674742 graphs with diameter 3. - Hugo Pfoertner, Dec 19 2017
REFERENCES
For references see A294733.
LINKS
M. Meringer, GenReg, Generation of regular graphs.
EXAMPLE
Degree r
2 4 6 8 10 12 14 16
n --------------------------------------
3 | 1 Diameter A294733
| 1 Number of graphs with this diameter (this sequence)
|
5 | 2 1
| 1 1
|
7 | 3 2 1
| 1 2 1
|
9 | 4 2 2 1
| 1 16 4 1
|
11 | 5 4 2 2 1
| 1 1 266 6 1
|
13 | 6 5 2 2 2 1
| 1 5 367860 10786 10 1
|
15 | 7 6 4 2 2 2 1
| 1 19 1 ? ? 17 1
|
17 | 8 7 >=4 2 2 2 2 1
| 1 33 ? ? ? ? 25 1
.
a(12)=1 corresponds to the only 4-regular graph on 11 nodes with diameter 4.
Its adjacency matrix is
.
1 2 3 4 5 6 7 8 9 0 1
1 . 1 1 1 1 . . . . . .
2 1 . 1 1 1 . . . . . .
3 1 1 . 1 1 . . . . . .
4 1 1 1 . . 1 . . . . .
5 1 1 1 . . 1 . . . . .
6 . . . 1 1 . 1 1 . . .
7 . . . . . 1 . . 1 1 1
8 . . . . . 1 . . 1 1 1
9 . . . . . . 1 1 . 1 1
10 . . . . . . 1 1 1 . 1
11 . . . . . . 1 1 1 1 .
.
A shortest walk along 4 edges is required to reach node 9 from node 1.
All others of the A068934(60)=265 4-regular graphs on 11 nodes have smaller diameters, i.e., 37 with diameter 2 and 227 with diameter 3.
CROSSREFS
KEYWORD
nonn,tabl,hard,more
AUTHOR
Hugo Pfoertner, Dec 14 2017
STATUS
approved