login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296620
Number of 4-regular (quartic) connected graphs on n nodes with diameter k written as irregular triangle T(n,k).
2
1, 0, 1, 0, 2, 0, 6, 0, 16, 0, 24, 35, 0, 37, 227, 1, 0, 26, 1502, 16, 0, 10, 10561, 202, 5, 0, 1, 84103, 4006, 58, 0, 1, 722252, 82726, 493, 19, 0, 0, 6383913, 1647078, 6224, 202, 1, 0, 0, 55831405, 30291536, 96504, 2156, 33
OFFSET
5,5
COMMENTS
The results were found by applying the Floyd-Warshall algorithm to the output of Markus Meringer's GenReg program.
LINKS
M. Meringer, GenReg, Generation of regular graphs.
EXAMPLE
Triangle begins:
Diameter
n/ 1 2 3 4 5 6 7
5: 1
6: 0 1
7: 0 2
8: 0 6
9: 0 16
10: 0 24 35
11: 0 37 227 1x
12: 0 26 1502 16
13: 0 10 10561 202 5
14: 0 1x 84103 4006 58
15: 0 1x 722252 82726 493 19
16: 0 0 6383913 1647078 6224 202 1x
17: 0 0 55831405 30291536 96504 2156 33
.
x indicates provision of adjacency information below.
Examples of unique 4-regular graphs with minimum diameter:
Adjacency matrix of the graph of diameter 2 on 14 nodes:
1 2 3 4 5 6 7 8 9 0 1 2 3 4
1 . 1 1 1 1 . . . . . . . . .
2 1 . . . . 1 1 1 . . . . . .
3 1 . . . . 1 1 1 . . . . . .
4 1 . . . . . . . 1 1 1 . . .
5 1 . . . . . . . . . . 1 1 1
6 . 1 1 . . . . . 1 . . 1 . .
7 . 1 1 . . . . . . 1 . . 1 .
8 . 1 1 . . . . . . . 1 . . 1
9 . . . 1 . 1 . . . . . . 1 1
10 . . . 1 . . 1 . . . . 1 . 1
11 . . . 1 . . . 1 . . . 1 1 .
12 . . . . 1 1 . . . 1 1 . . .
13 . . . . 1 . 1 . 1 . 1 . . .
14 . . . . 1 . . 1 1 1 . . . .
.
Adjacency matrix of the graph of diameter 2 on 15 nodes:
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 . 1 1 1 1 . . . . . . . . . .
2 1 . 1 . . 1 1 . . . . . . . .
3 1 1 . . . . . 1 1 . . . . . .
4 1 . . . . . . . . 1 1 1 . . .
5 1 . . . . . . . . . . . 1 1 1
6 . 1 . . . . . . . 1 1 . 1 . .
7 . 1 . . . . . . . . . 1 . 1 1
8 . . 1 . . . . . . 1 . 1 . 1 .
9 . . 1 . . . . . . . 1 . 1 . 1
10 . . . 1 . 1 . 1 . . . . . . 1
11 . . . 1 . 1 . . 1 . . . . 1 .
12 . . . 1 . . 1 1 . . . . 1 . .
13 . . . . 1 1 . . 1 . . 1 . . .
14 . . . . 1 . 1 1 . . 1 . . . .
15 . . . . 1 . 1 . 1 1 . . . . .
.
Examples of unique graphs with maximum diameter:
Adjacency matrix of the graph of diameter 4 on 11 nodes:
1 2 3 4 5 6 7 8 9 0 1
1 . 1 1 1 1 . . . . . .
2 1 . 1 1 1 . . . . . .
3 1 1 . 1 1 . . . . . .
4 1 1 1 . . 1 . . . . .
5 1 1 1 . . 1 . . . . .
6 . . . 1 1 . 1 1 . . .
7 . . . . . 1 . . 1 1 1
8 . . . . . 1 . . 1 1 1
9 . . . . . . 1 1 . 1 1
10 . . . . . . 1 1 1 . 1
11 . . . . . . 1 1 1 1 .
.
Adjacency matrix of the graph of diameter 7 on 16 nodes:
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 . 1 1 1 1 . . . . . . . . . . .
2 1 . 1 1 1 . . . . . . . . . . .
3 1 1 . 1 1 . . . . . . . . . . .
4 1 1 1 . . 1 . . . . . . . . . .
5 1 1 1 . . 1 . . . . . . . . . .
6 . . . 1 1 . 1 1 . . . . . . . .
7 . . . . . 1 . 1 1 1 . . . . . .
8 . . . . . 1 1 . 1 1 . . . . . .
9 . . . . . . 1 1 . 1 1 . . . . .
10 . . . . . . 1 1 1 . 1 . . . . .
11 . . . . . . . . 1 1 . 1 1 . . .
12 . . . . . . . . . . 1 . . 1 1 1
13 . . . . . . . . . . 1 . . 1 1 1
14 . . . . . . . . . . . 1 1 . 1 1
15 . . . . . . . . . . . 1 1 1 . 1
16 . . . . . . . . . . . 1 1 1 1 .
CROSSREFS
Cf. A006820 (row sums), A204329, A294733 (number of terms in each row for odd n), A296525 (number of terms in each row for even n).
Sequence in context: A293935 A285479 A327369 * A263789 A081153 A369278
KEYWORD
nonn,tabf
AUTHOR
Hugo Pfoertner, Dec 17 2017
STATUS
approved