login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296619
The number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at 2.
3
0, 1, 1, 6, 13, 52, 152, 550, 1813, 6453, 22427, 80330, 286895, 1038931, 3772801, 13807294, 50726893, 187332517, 694364517, 2583714636, 9644852364, 36115537269, 135607526865, 510496492338, 1926284451923, 7284476707597, 27602839227883, 104791979218326
OFFSET
0,4
COMMENTS
a(n) is the number of 2-D walks with n steps of type {(1,-2), (1,-1), (1,1), or (1,2)} starting at (0,0), ending at (n,2), and not dropping below the x-axis.
The sequence corresponds to element (1,3) of the matrix B(n)^n (see Maple script). Furthermore, element (1,1) of the matrix is A187430, the element (1,2) of these matrix is A055113.
LINKS
FORMULA
a(n) = A185286(n,2). - Robert Israel, Dec 19 2017
EXAMPLE
There are 6 walks of length 3:
__
| | __
__| |_ __| |_ __ _
| | | |__|
_| _| _|
2+2-2=2 2+1-1=2 2-1+1=2
__
__ _ | |_ _
| | | __| __ |
_| |__| _| _| |__|
2-2+2=2 1+2-1=2 1-1+2=2
MAPLE
B := n -> LinearAlgebra:-ToeplitzMatrix([0, 1, 1, seq(0, k=0..n-2)], symmetric):
seq((B(n)^n)(1, 3), n=0..27);
# alternative:
T:= proc(n, k) option remember;
if k < 0 or k > 2*n then return 0 fi;
procname(n-1, k-2)+procname(n-1, k-1)+procname(n-1, k+1)+procname(n-1, k+2)
end proc:
T(0, 0):= 1:
seq(T(n, 2), n=0..40); # Robert Israel, Dec 19 2017
MATHEMATICA
b[n_] := ToeplitzMatrix[Join[{0, 1, 1}, ConstantArray[0, n-1]]];
Prepend[Table[MatrixPower[b[n], n][[1, 3]], {n, 20}], 0]
(* Andrey Zabolotskiy, Dec 19 2017 *)
PROG
(PARI)
Next(v)={vector(#v+2, i, if(i<3||i>#v-2, 0, v[i-2]+v[i-1]+v[i+1]+v[i+2]))}
my(v=vector(7, i, i==3)); for(n=1, 50, print1(v[5], ", "); v=Next(v)) \\ Andrew Howroyd, Dec 18 2017
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Feng Jishe, Dec 17 2017
STATUS
approved