login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296622 Expansion of e.g.f. log(1 + arcsin(x)*arcsinh(x)) (even powers only). 0
0, 2, -12, 328, -15008, 1356192, -166628352, 31500831360, -7474571071488, 2418220114014720, -940432709166170112, 464609611973533501440, -268355615175956213268480, 188067307050238642631516160, -151072053399934628129585233920, 142618740583722182161589570273280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..15.

FORMULA

E.g.f.: log(1 - i*log(i*x + sqrt(1 - x^2))*log(x + sqrt(1 + x^2))), where i is the imaginary unit (even powers only).

EXAMPLE

log(1 + arcsin(x)*arcsinh(x)) = 2*x^2/2! - 12*x^4/4! + 328*x^6/6! - 15008*x^8/8! + 1356192*x^10/10! - 166628352*x^12/12! + ...

MATHEMATICA

nmax = 15; Table[(CoefficientList[Series[Log[1 + ArcSin[x] ArcSinh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

nmax = 15; Table[(CoefficientList[Series[Log[1 - I Log[I x + Sqrt[1 - x^2]] Log[x + Sqrt[1 + x^2]]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

CROSSREFS

Cf. A001818, A009232, A009359, A012598, A189815, A296435.

Sequence in context: A091472 A156518 A012727 * A325756 A181142 A088229

Adjacent sequences:  A296619 A296620 A296621 * A296623 A296624 A296625

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Dec 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 00:40 EST 2020. Contains 331030 sequences. (Running on oeis4.)