|
|
A189815
|
|
Expansion of e.g.f. log(1/(1-arcsin(x))).
|
|
7
|
|
|
1, 1, 3, 10, 53, 304, 2303, 18768, 185033, 1954176, 23756667, 308077056, 4457821821, 68513332224, 1150764459063, 20443736745984, 391167511473681, 7884821722497024, 169370797497060339, 3818539009013907456, 91013260219635394629, 2269047587255097753600, 59435772666287730632559
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n-1)!*Sum_{m=1..(n-1)} ((1+(-1)^(n-m))/2)*Sum_{k=1..(n-m)} (Sum_{j=1..k} binomial(k,j)*2^(1-j)*Sum_{i=0..floor(j/2)} (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)*binomial(k+n-1,n-1)) + (n-1)!.
|
|
MAPLE
|
a:=series(log(1/(1-arcsin(x))), x=0, 24): seq(n!*coeff(a, x, n), n=1..23); # Paolo P. Lava, Mar 27 2019
|
|
MATHEMATICA
|
Rest[With[{nmax = 50}, CoefficientList[Series[Log[1/(1 - ArcSin[x])], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Jan 16 2018 *)
|
|
PROG
|
(Maxima) a(n):=(n-1)!*sum((1+(-1)^(n-m))/2*sum((sum(binomial(k, j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j, i)*(j-2*i)^(n-m+j)/(n-m+j)!, i, 0, floor(j/2)), j, 1, k))*binomial(k+n-1, n-1), k, 1, n-m), m, 1, n-1)+(n-1)!;
(PARI) x='x+O('x^30); Vec(serlaplace(log(1/(1-asin(x))))) \\ G. C. Greubel, Jan 16 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|