login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189815
Expansion of e.g.f. log(1/(1-arcsin(x))).
7
1, 1, 3, 10, 53, 304, 2303, 18768, 185033, 1954176, 23756667, 308077056, 4457821821, 68513332224, 1150764459063, 20443736745984, 391167511473681, 7884821722497024, 169370797497060339, 3818539009013907456, 91013260219635394629, 2269047587255097753600, 59435772666287730632559
OFFSET
1,3
LINKS
FORMULA
a(n) = (n-1)!*Sum_{m=1..(n-1)} ((1+(-1)^(n-m))/2)*Sum_{k=1..(n-m)} (Sum_{j=1..k} binomial(k,j)*2^(1-j)*Sum_{i=0..floor(j/2)} (-1)^((n-m)/2-i-j)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!)*binomial(k+n-1,n-1)) + (n-1)!.
a(n) ~ (n-1)! / (sin(1))^n. - Vaclav Kotesovec, Nov 06 2014
MATHEMATICA
Rest[With[{nmax = 50}, CoefficientList[Series[Log[1/(1 - ArcSin[x])], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Jan 16 2018 *)
PROG
(Maxima) a(n):=(n-1)!*sum((1+(-1)^(n-m))/2*sum((sum(binomial(k, j)*2^(1-j)*sum((-1)^((n-m)/2-i-j)*binomial(j, i)*(j-2*i)^(n-m+j)/(n-m+j)!, i, 0, floor(j/2)), j, 1, k))*binomial(k+n-1, n-1), k, 1, n-m), m, 1, n-1)+(n-1)!;
(PARI) x='x+O('x^30); Vec(serlaplace(log(1/(1-asin(x))))) \\ G. C. Greubel, Jan 16 2018
CROSSREFS
Sequence in context: A309910 A042171 A133148 * A143599 A264409 A199202
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 02 2011
EXTENSIONS
Terms a(18) onward added by G. C. Greubel, Jan 16 2018
STATUS
approved