login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199202
E.g.f. satisfies: A(x) = exp( x*(A(x) + 1/A(-x))/2 ).
2
1, 1, 3, 10, 53, 376, 3607, 38032, 498409, 7122304, 121691051, 2182921984, 45592175389, 987527547904, 24479592884671, 620921169012736, 17795726532904913, 517636848366223360, 16851227968120051027, 552890360903850459136, 20150074601540899828741
OFFSET
0,3
COMMENTS
Compare to the e.g.f. G(x) of A058014, which satisfies both: G(x) = exp(x*(G(x) + 1/G(x))/2) and G(x) = exp(x*(G(x) + G(-x))/2); A058014 counts labeled trees such that the degrees of all nodes, excluding the first, are odd.
LINKS
FORMULA
E.g.f.: A(x) = exp(x*B(x)) where B(x) = (exp(x*B(x)) + exp(x*B(-x)))/2 is the e.g.f. of A198198.
E.g.f. satisfies: log(x) = x*log(y)/(x*y^2 - 2*y*log(y)) + log(2*log(y) - x*y), where y = A(x). - Vaclav Kotesovec, Feb 28 2014
a(n) ~ c * n! * d^n / n^(3/2), where d = 1.9126860724609002014... (see A198198), and c = 1.84843299011729... if n is even, and c = 1.808309580980992... if n is odd. - Vaclav Kotesovec, Feb 28 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 53*x^4/4! + 376*x^5/5! +.. .
Let B(x) = log(A(x))/x = (A(x) + 1/A(-x))/2 then B(x) begins:
B(x) = 1 + x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 216*x^5/5! + 1561*x^6/6! + 19328*x^7/7! +...+ A198198(n)*x^n/n! +...
such that B(x) = (exp(x*B(x)) + exp(x*B(-x)))/2.
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(n=0, n, A=exp(x*(A+1/subst(A, x, -x))/2+x*O(x^n))); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A189815 A143599 A264409 * A135829 A071895 A054422
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 03 2011
STATUS
approved