login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198198
E.g.f. satisfies: A(x) = ( exp(x*A(x)) + exp(x*A(-x)) )/2.
2
1, 1, 1, 4, 25, 216, 1561, 19328, 225681, 3790720, 54595921, 1141489152, 20620975849, 519551642624, 11074307974185, 325796967940096, 8068953248603809, 271784019897188352, 7647972455738262817, 290140183695205990400, 9154902981606486123321
OFFSET
0,4
LINKS
FORMULA
E.g.f. satisfies: A(x) = Sum_{n>=0} (A(x)^n + A(-x)^n)/2 * x^n/n!.
E.g.f.: A(x) = log(F(x))/x = (F(x) + 1/F(-x))/2 where F(x) is the e.g.f. of A199202.
E.g.f. satisfies: log(-exp(x*y) + 2*y) + (x*y)/(exp(x*y)*(exp(x*y) - 2*y)) = 0, where y = A(x). - Vaclav Kotesovec, Feb 26 2014
a(n) ~ c * n! * d^n / n^(3/2), where d = 1.9126860724609002014... (see Mathematica program), and c = 0.8469455456348576... if n is even, and c = 0.9471934761885996... if n is odd. - Vaclav Kotesovec, Feb 26 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 216*x^5/5! + 1561*x^6/6! +...
Related expansions begin:
exp(x*A(x)) = 1 + x + 3*x^2/2! + 10*x^3/3! + 53*x^4/4! + 376*x^5/5! + 3607*x^6/6! +...+ A199202(n)*x^n/n! +...
exp(x*A(-x)) = 1 + x - x^2/2! - 2*x^3/3! - 3*x^4/4! + 56*x^5/5! - 485*x^6/6! +...
MATHEMATICA
(* Output from following program is constant d *) 1/r/.FindRoot[{E^(3*s)*r^2 + 2*r*s^2 - 2*E^(2*s)*r*(1+s) + E^s*(r^2*(1-2*s) + 4*s) == 0, (r*s)/(E^s*(E^s*r-2*s)) + Log[-E^s+(2*s)/r] == 0}, {{r, 1/2}, {s, 1}}, WorkingPrecision -> 50] (* Vaclav Kotesovec, Feb 26 2014 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(exp(x*A)+exp(x*subst(A, x, -x+x*O(x^n))))/2); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A215094 A047733 A351767 * A007830 A305404 A218826
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 22 2011
STATUS
approved