This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198197 The q-exponential of x, E_q(x,q), evaluated at q=-x. 9
 1, 1, 0, -1, -1, -1, -2, -3, -3, -2, 0, 2, 2, 0, -1, 2, 8, 12, 11, 8, 7, 7, 5, 2, 1, 2, 4, 7, 7, -3, -21, -34, -34, -28, -28, -37, -46, -42, -22, -1, -1, -28, -62, -75, -60, -35, -16, 1, 25, 53, 77, 93, 97, 90, 91, 121, 165, 175, 129, 70, 64, 127, 213, 267, 273, 261, 278, 329, 340, 225, 11, -155, -160, -50, 25, -40, -223, -406, -475 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS This q-exponential of x is defined by: E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q), where log(E_q(x,q)) = Sum_{n>=1} (q-1)^n/(q^n-1) * x^n/n, and faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n. See A152398 for the dual q-exponential function. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..1000 Eric Weisstein, q-Exponential Function from MathWorld. Eric Weisstein, q-Factorial from MathWorld. FORMULA G.f.: E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product_{k=1..n} (1 - (-x)^k)/(1+x). G.f.: E_q(x,-x) = exp( Sum_{n>=1} -(1+x)^n/(1-(-x)^n) * (-x)^n/n ). G.f.: E_q(x,-x) = Product_{n>=1} (1 - (1+x)*(-x)^n). EXAMPLE G.f.: E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 +... where E_q(x,-x) = 1 + x - x^3/(1-x) - x^6/((1-x)*(1-x+x^2)) + x^10/((1-x)*(1-x+x^2)*(1-x+x^2-x^3)) + x^15/((1-x)*(1-x+x^2)*(1-x+x^2-x^3)*(1-x+x^2-x^3+x^4)) +... The g.f. equals the product: E_q(x,-x) = (1 + (1+x)*x) * (1 - (1+x)*x^2) * (1 + (1+x)*x^3) * (1 - (1+x)*x^4) * (1 + (1+x)*x^5) * (1 - (1+x)*x^6) *... The logarithm of the g.f. equals the series: log(E_q(x,-x)) = x - (1+x)^2/(1-x^2)*x^2/2 + (1+x)^3/(1+x^3)*x^3/3 - (1+x)^4/(1-x^4)*x^4/4 + (1+x)^5/(1+x^5)*x^5/5 - (1+x)^6/(1-x^6)*x^6/6 +... more explicitly, log(E_q(x,-x)) = x - x^2/2 - 2*x^3/3 - x^4/4 - 4*x^5/5 - 10*x^6/6 - 13*x^7/7 - 17*x^8/8 - 20*x^9/9 - 16*x^10/10 +... PROG (PARI) {a(n)=local(E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(E_q, n)} (PARI) {a(n)=local(q=-x, E_q=exp(sum(k=1, n, (q-1)^k/(q^k-1) * x^k/k)+x*O(x^n))); polcoeff(E_q, n)} (PARI) {a(n)=polcoeff(prod(k=1, n, 1-(1+x)*(-x)^k+x*O(x^n)), n)} CROSSREFS Cf. A198262 (log), A152398 (e_q), A198199, A198200. Sequence in context: A083057 A099028 A279645 * A203400 A077869 A076585 Adjacent sequences:  A198194 A198195 A198196 * A198198 A198199 A198200 KEYWORD sign AUTHOR Paul D. Hanna, Oct 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 01:33 EST 2019. Contains 329978 sequences. (Running on oeis4.)