login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198197 The q-exponential of x, E_q(x,q), evaluated at q=-x. 9
1, 1, 0, -1, -1, -1, -2, -3, -3, -2, 0, 2, 2, 0, -1, 2, 8, 12, 11, 8, 7, 7, 5, 2, 1, 2, 4, 7, 7, -3, -21, -34, -34, -28, -28, -37, -46, -42, -22, -1, -1, -28, -62, -75, -60, -35, -16, 1, 25, 53, 77, 93, 97, 90, 91, 121, 165, 175, 129, 70, 64, 127, 213, 267, 273, 261, 278, 329, 340, 225, 11, -155, -160, -50, 25, -40, -223, -406, -475 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

This q-exponential of x is defined by:

E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q),

where

log(E_q(x,q)) = Sum_{n>=1} (q-1)^n/(q^n-1) * x^n/n,

and faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

See A152398 for the dual q-exponential function.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1000

Eric Weisstein, q-Exponential Function from MathWorld.

Eric Weisstein, q-Factorial from MathWorld.

FORMULA

G.f.: E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product_{k=1..n} (1 - (-x)^k)/(1+x).

G.f.: E_q(x,-x) = exp( Sum_{n>=1} -(1+x)^n/(1-(-x)^n) * (-x)^n/n ).

G.f.: E_q(x,-x) = Product_{n>=1} (1 - (1+x)*(-x)^n).

EXAMPLE

G.f.: E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 +...

where

E_q(x,-x) = 1 + x - x^3/(1-x) - x^6/((1-x)*(1-x+x^2)) + x^10/((1-x)*(1-x+x^2)*(1-x+x^2-x^3)) + x^15/((1-x)*(1-x+x^2)*(1-x+x^2-x^3)*(1-x+x^2-x^3+x^4)) +...

The g.f. equals the product:

E_q(x,-x) = (1 + (1+x)*x) * (1 - (1+x)*x^2) * (1 + (1+x)*x^3) * (1 - (1+x)*x^4) * (1 + (1+x)*x^5) * (1 - (1+x)*x^6) *...

The logarithm of the g.f. equals the series:

log(E_q(x,-x)) = x - (1+x)^2/(1-x^2)*x^2/2 + (1+x)^3/(1+x^3)*x^3/3 - (1+x)^4/(1-x^4)*x^4/4 + (1+x)^5/(1+x^5)*x^5/5 - (1+x)^6/(1-x^6)*x^6/6 +...

more explicitly,

log(E_q(x,-x)) = x - x^2/2 - 2*x^3/3 - x^4/4 - 4*x^5/5 - 10*x^6/6 - 13*x^7/7 - 17*x^8/8 - 20*x^9/9 - 16*x^10/10 +...

PROG

(PARI) {a(n)=local(E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(E_q, n)}

(PARI) {a(n)=local(q=-x, E_q=exp(sum(k=1, n, (q-1)^k/(q^k-1) * x^k/k)+x*O(x^n))); polcoeff(E_q, n)}

(PARI) {a(n)=polcoeff(prod(k=1, n, 1-(1+x)*(-x)^k+x*O(x^n)), n)}

CROSSREFS

Cf. A198262 (log), A152398 (e_q), A198199, A198200.

Sequence in context: A083057 A099028 A279645 * A203400 A077869 A076585

Adjacent sequences:  A198194 A198195 A198196 * A198198 A198199 A198200

KEYWORD

sign

AUTHOR

Paul D. Hanna, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 01:33 EST 2019. Contains 329978 sequences. (Running on oeis4.)