login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152398
The q-exponential of x, e_q(x,q), evaluated at q = -x.
10
1, 1, 1, 2, 4, 7, 11, 17, 28, 48, 80, 128, 204, 332, 545, 887, 1432, 2313, 3750, 6086, 9859, 15944, 25788, 41749, 67604, 109415, 177017, 286409, 463495, 750081, 1213713, 1963771, 3177444, 5141446, 8319390, 13461189, 21780519, 35241682
OFFSET
0,4
COMMENTS
The g.f.s for this sequence illustrate the following formula:
log(e_q(x,q)) = Sum_{n>=1} (1-q)^n/(1-q^n)*x^n/n, where
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential of x and
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.
LINKS
Eric Weisstein, q-Exponential Function from MathWorld.
Eric Weisstein, q-Factorial from MathWorld.
FORMULA
G.f.: e_q(x,-x) = Sum_{n>=0} x^n/(Product_{k=1..n} (1-(-x)^k)/(1+x)).
G.f.: e_q(x,-x) = exp( Sum_{n>=1} x^n*(1+x)^n/(1-(-x)^n)/n ).
G.f.: 1/Product_{k>0} 1+(1+x)*(-x)^k. - Vladeta Jovovic, Dec 19 2008
a(n) ~ c/r^n where r = (sqrt(5) - 1)/2 = 0.6180339887... and c = 0.652419554233497352459208493304650..., where e_q(-r,r) = 0.887276226980250304353751667447441... - Paul D. Hanna, Dec 20 2008
c = 1 / (r * sqrt(5) * QPochhammer((1-sqrt(5))/2)). - Vaclav Kotesovec, Oct 22 2020
EXAMPLE
G.f.: e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + ...
log(e_q(x,-x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 16*x^5/5 + 22*x^6/6 + ... (A152399).
PROG
(PARI) a(n)=polcoeff(sum(k=0, n, x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))), n)
(PARI) a(n)=polcoeff(exp(sum(k=1, n, x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)), n)
(PARI) {a(n)=polcoeff(1/prod(k=1, n, 1+(1+x)*(-x)^k+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 20 2008
CROSSREFS
Cf. A152399: log(e_q(x, -x)); A227681, A306749.
Sequence in context: A023429 A023428 A093911 * A023427 A216116 A357926
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 16 2008
STATUS
approved