login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357926
a(n) = Sum_{k=0..floor(n/4)} Stirling2(n - 3*k,n - 4*k).
3
1, 1, 1, 1, 1, 2, 4, 7, 11, 17, 29, 54, 102, 187, 337, 619, 1179, 2298, 4488, 8733, 17085, 33931, 68407, 139030, 283474, 580477, 1198195, 2496661, 5241757, 11061986, 23453024, 50008919, 107338755, 231825945, 503294589, 1097731342, 2405837254, 5300147291
OFFSET
0,6
FORMULA
G.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - j * x^4).
PROG
(PARI) a(n) = sum(k=0, n\4, stirling(n-3*k, n-4*k, 2));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/prod(j=1, k, 1-j*x^4)))
CROSSREFS
Cf. A357904.
Sequence in context: A152398 A023427 A216116 * A129929 A360891 A073738
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 20 2022
STATUS
approved